USBCNC

User Manual

Document Release 4.00.11
Document History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Author</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2006-03-10</td>
<td>Bert Eding</td>
<td>Initial version</td>
</tr>
<tr>
<td>4.00</td>
<td>2011-09-19</td>
<td>Bert Eding</td>
<td>- Modified UI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- OpenGL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Nesting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Gotoline->start and Pause->start completely redesigned.</td>
</tr>
<tr>
<td>4.00</td>
<td>2011-10-23</td>
<td>Bert Eding</td>
<td>Added G68 R_ X_ Y_ rotation.</td>
</tr>
<tr>
<td>4.00</td>
<td>2011-11-05</td>
<td>Bert Eding</td>
<td>Added traffic light support, usable on AUX outputs of CPU card. Only CPU5B can support all 3 colors. Extended dlgmsg, 12 parameters, picture. Users pay attention the behavior of the cancel button has changed, the program will continue with #5390 = -1, so after dlgmsg please use if [#5398 == 1] ;User pressed OK .. do your stuff here endif</td>
</tr>
<tr>
<td>4.00</td>
<td>2011-11-13</td>
<td>Bert Eding</td>
<td>Some modifications for added UI buttons in variable window.</td>
</tr>
<tr>
<td>4.00</td>
<td>2011-12-11</td>
<td>Bert Eding</td>
<td>Corrected a few mistakes.</td>
</tr>
<tr>
<td>4.00.11</td>
<td>2012-03-03</td>
<td>Bert Eding</td>
<td>Removed V1.xx, V2.xx V3.xx document history because this table became too long. Synced version number with actual software version number. Removed unnecessary text. Corrected mistakes and added missing descriptions reported by customers. Updated the hardware tips appendix with more detailed information about good EMC practices.</td>
</tr>
</tbody>
</table>

© Copyright USBCNC
ACKNOWLEDGEMENTS

The G-Code part of this user manual has been derived from the full report of the RS274/NGC language. Parts that are less relevant to USBCNC users or parts that are not supported are left out.
Table of contents

Table of contents 4

1 Introduction 8
 1.1 Context and scope 8
 1.2 Definitions, acronyms and abbreviations 9
 1.3 Minimum PC requirements 9
 1.4 Installation of USBCNC 10
 1.4.1 USB 10
 1.4.2 Ethernet 11
 1.4.3 Set admin mode 15

2 The user interface 16
 2.1 Setup Page's 16
 2.1.1 UI and Connection 17
 2.1.2 Motor setup 17
 2.1.3 Homing and ESTOP setup 18
 2.1.4 Backlash setup 19
 2.1.5 Trajectory setup 20
 2.1.6 Kinematic Setup 20
 2.1.7 Tool change Area 20
 2.1.8 Tangential knife setup 20
 2.1.9 Safety Input 21
 2.1.10 Spindle and PWM setup 21
 2.1.11 UI setup items 22
 2.1.12 Load/Run Automatically 23
 2.1.13 IO setup 23
 2.1.14 Traffic light setup 24
 2.1.15 Interpreter settings 24
 2.1.16 JobTimeEstimation 24
 2.1.17 Hand wheel Setup 25
 2.1.18 Probing Setup 25
 2.1.19 CPUOPT 26
 2.2 Operate Page 28
 2.2.1 Operate page introduction 28
 2.2.2 Reset Button F1 29
 2.2.3 Escape Button 29
 2.2.4 The menu’s 30
 2.2.4.1 Main Menu 30
 2.2.4.2 Home menu 30
 2.2.4.3 Zero menu 30
 2.2.4.4 Auto menu 30
 2.2.4.5 IO menu 34
 2.2.4.6 Graphic menu 34
 2.2.4.7 Jog menu 35
 2.2.4.8 Jog pad 35
 2.2.4.9 User menu 36
 2.2.5 Operate page tasks 37
 2.2.5.1 Startup 37
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.5.2</td>
<td>Homing</td>
<td>37</td>
</tr>
<tr>
<td>2.2.5.3</td>
<td>Load and run a g-code file</td>
<td>37</td>
</tr>
<tr>
<td>2.3</td>
<td>Program Page, DXF and HPGL import</td>
<td>42</td>
</tr>
<tr>
<td>2.4</td>
<td>Tools Page</td>
<td>45</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Milling</td>
<td>45</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Tool change</td>
<td>45</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Automatic user defined Tool change ATC</td>
<td>45</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Turning</td>
<td>46</td>
</tr>
<tr>
<td>2.5</td>
<td>The variable Page</td>
<td>47</td>
</tr>
<tr>
<td>2.6</td>
<td>IO Page</td>
<td>48</td>
</tr>
<tr>
<td>2.7</td>
<td>homing and coordinate systems</td>
<td>49</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Manual homing the machine</td>
<td>50</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Automatic homing the machine and HomeIsEstop</td>
<td>51</td>
</tr>
<tr>
<td>2.7.3</td>
<td>Tandem axes homing</td>
<td>51</td>
</tr>
<tr>
<td>2.7.4</td>
<td>Work versus Machine coordinate system and zeroing</td>
<td>52</td>
</tr>
<tr>
<td>2.8</td>
<td>Keyboard shortcuts</td>
<td>54</td>
</tr>
<tr>
<td>2.9</td>
<td>Zero tool macro</td>
<td>55</td>
</tr>
<tr>
<td>2.10</td>
<td>Tool measurement Macro</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>Input: the RS274/NGC Language</td>
<td>59</td>
</tr>
<tr>
<td>3.1</td>
<td>Overview</td>
<td>59</td>
</tr>
<tr>
<td>3.2</td>
<td>RS274/NGC Language view of a Machining Center</td>
<td>59</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Parameters/Variables</td>
<td>59</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Tool data</td>
<td>62</td>
</tr>
<tr>
<td>3.2.2.1</td>
<td>Tool Orientation for lathes</td>
<td>62</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Coordinate Systems</td>
<td>63</td>
</tr>
<tr>
<td>3.3</td>
<td>Format of a Line</td>
<td>63</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Line Number</td>
<td>63</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Word</td>
<td>64</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Number</td>
<td>64</td>
</tr>
<tr>
<td>3.3.2.2</td>
<td>Parameter Value</td>
<td>65</td>
</tr>
<tr>
<td>3.3.2.3</td>
<td>Expressions and Binary Operations</td>
<td>65</td>
</tr>
<tr>
<td>3.3.2.4</td>
<td>Unary Operation Value</td>
<td>66</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Parameter Setting</td>
<td>66</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Comments and Messages</td>
<td>67</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Item Repeats</td>
<td>67</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Item order</td>
<td>67</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Commands and Machine Modes</td>
<td>68</td>
</tr>
<tr>
<td>3.4</td>
<td>Modal Groups</td>
<td>68</td>
</tr>
<tr>
<td>3.5</td>
<td>G Codes</td>
<td>69</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Rapid Linear Motion - G0</td>
<td>70</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Linear Motion at Feed Rate - G1</td>
<td>72</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Arc at Feed Rate - G2 and G3</td>
<td>72</td>
</tr>
<tr>
<td>3.5.3.1</td>
<td>Radius Format Arc</td>
<td>72</td>
</tr>
<tr>
<td>3.5.3.2</td>
<td>Center Format Arc</td>
<td>73</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Dwell - G4</td>
<td>74</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Set Coordinate System Data -G10</td>
<td>74</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Plane Selection - G17, G18, and G19</td>
<td>75</td>
</tr>
<tr>
<td>3.5.7</td>
<td>Length Units - G20/G21 and G70/G71</td>
<td>75</td>
</tr>
<tr>
<td>3.5.8</td>
<td>Return to Home - G28 and G30</td>
<td>75</td>
</tr>
</tbody>
</table>
3.5.9 G33, G33.1 Spindle-Synchronized Motion
3.5.10 Straight Probe - G38.2
3.5.10.1 The Straight Probe Command
3.5.10.2 Using the Straight Probe Command
3.5.10.3 Example Code
3.5.11 Cutter Radius Compensation - G40, G41, G41.1, G42, G42.1
3.5.11.1 Example code for milling
3.5.11.2 Example code for turning
3.5.12 Tool Length Offsets - G43, G43.1, and G49
3.5.13 Move in Absolute Coordinates - G53
3.5.14 Select Coordinate System - G54 to G59.3
3.5.15 Set Path Control Mode - G61, and G64, or G64 Px
3.5.16 Look Ahead feed
3.5.17 Coordinate system rotation G68
3.5.18 Threading (Lathe) – G76
3.5.19 Cancel Modal Motion - G80
3.5.20 Canned Cycles - G81 to G89
3.5.20.1 Preliminary and In-Between Motion
3.5.20.2 G81 Cycle
3.5.20.3 G82 Cycle
3.5.20.4 G83 Cycle
3.5.20.5 G85 Cycle
3.5.20.6 G86 Cycle
3.5.20.7 G87 Cycle
3.5.20.8 G88 Cycle
3.5.20.9 G89 Cycle
3.5.21 Set Distance Mode - G90 and G91
3.5.22 Coordinate System Offsets - G92, G92.1, G92.2, G92.3
3.5.23 Set Feed Rate Mode - G93 and G94
3.5.24 Set Canned Cycle Return Level - G98 and G99

3.6 Input M Codes
3.6.1 Program Stopping and Ending - M0, M1, M2, M30, M60
3.6.2 Spindle Control - M3, M4, M5
3.6.3 Tool Change - M6
3.6.4 Coolant Control - M7, M8, M9
3.6.5 Override Control - M48 and M49
3.6.6 IO M Functions
3.6.7 Standard CNC IO - M3..M9, M80..M87
3.6.8 General purpose IO of CPU5B - M54, M55 and M56

3.7 Other Input Codes
3.7.1 Set Feed Rate - F
3.7.2 Set Spindle Speed - S
3.7.3 Select Tool - T

3.8 Order of Execution

4 Language extensions
4.1 Flow control
4.2 supported operations on expressions
4.2.1 unary operations
4.2.2 binary operations:
4.2.3 An example:
4.2.4 Special interpreter commands, non G-Code
4.2.5 Special interpreter MDI commands.
4.3 Macro file and automatic tool change
1 Introduction

This manual describes the usage of the CNC control system. Most hardware details can be found in the hardware documentation on the Eding CNC download page.

1.1 CONTEXT AND SCOPE

This section describes the context, hardware and software of a USBCNC controlled Machine.

1. Operator
2. PC connected via USB or Ethernet to electronic cabinet which contains the USBCNC CPU. The PC runs the USBCNC Control Software.
3. Electronics cabinet, with power supplies, drives and USNCNC CPU.
4. USBCNC CPU
5. CNC Machine

The connection from CPU to the PC is USB or Ethernet depending on the CPU model.

The CPU delivers STEP/Direction signals to the power stage of each motor (drive), the motor connections of the drive go to the motors inside the machine.

Other connections like home-sensor switches go directly from CPU to the machine. For detailed info on all IO signals see the info in the technical flyers of the CPU, available on the download page.

The Scope of the USBCNC product is the USBCNC software on the PC and the USBCNC CPU.
1.2 DEFINITIONS, ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNC</td>
<td>Computerized Numerical Control</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processor Unit, a PCB board with a Processor on it.</td>
</tr>
<tr>
<td>DXF</td>
<td>Drawing Exchange Format) is a CAD data file format developed by Autodesk</td>
</tr>
<tr>
<td>FIFO</td>
<td>First In First Out Buffer</td>
</tr>
<tr>
<td>HPGL</td>
<td>Hewlet Packard Graphical Language</td>
</tr>
<tr>
<td>GUI/UI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>INTERPRETER</td>
<td>A software function that is able to read a text file and execute the commands contained therein.</td>
</tr>
<tr>
<td>JOBFILE</td>
<td>A job is the text file (G code) that will be executed by the interpreter.</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface.</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
<tr>
<td>G-Code</td>
<td>CNC specific language to control the movements and IO of a milling machine.</td>
</tr>
<tr>
<td>LAF</td>
<td>Look Ahead Feed, advanced motion algorithm that ensures minimal machining time.</td>
</tr>
</tbody>
</table>

1.3 MINIMUM PC REQUIREMENTS

- 1.4 GHz Atom.
- Pentium, duo-core recommended for Ethernet.
- 1024 MB RAM for XP, 4G for Windows 7.
- Windows XP or Windows 7, 32 or 64 bit.
- Minimum Screen resolution 1024 x 768.
- Graphic card with Open GL support is preferred.
- USB-2 connection / Ethernet connection for Ethernet CPU's
- Intel 100Mbit Ethernet card for Ethernet CPU's.

Windows XP and Windows 7 is proven to work fine with USBCNC. Windows Vista is not.

USBCNC requires soft-real-time behavior of your PC. Sometimes a bad driver of your video-card, sound etc may be the cause of problems with USBCNC. USBCNC requires a USB communication speed of about 150 times/second to and from the USBCNC CPU.

There are PC’s with bad USB chipset on which cannot handle this. One of such PC’s is the ACER notebook time-line series. From the better brand notebooks like Dell, HP, Sony, Toshiba I have not yet heard problems. When you encounter this, you may be able to solve it by adding a PCI USB card.
1.4 INSTALLATION OF USBCNC

Download the installation executable from the website download page. Click on it to install the software. Follow the screens. On Windows 7, click with the right mouse button, start as administrator.

For setup of the hardware, check the hardware technical flyers for your CPU type. They are on the download page of the website.

1.4.1 USB

During installation be sure to check "Install USB drivers":

![Completing the USBCNC4Beta Setup Wizard](image)

After installation reboot the PC, when it is rebooted connect the CPU, after 10 – 60 seconds, you will see that windows has found an USBCNC COM port if you are using and USB based CPU board. You can check that the USB driver is correctly installed in windows device manager, press Windows start button==>my computer, click with right mouse button and select "properties". Select Device Manager:
If you see this, the USB driver is correctly installed. The COM17 number may be different on your system.

1.4.2 Ethernet

For Ethernet you need a free Ethernet connection on the PC. Add a 2nd network card if needed. Connect the CPU using a 100 MBit UTP Cross cable. Then setup the Ethernet adapter. Go to the windows network settings, the network adapter with No network access is one for the CPU:
Click on the adapter with no network access, here: "LAN-verbinding 4" here, the text in your PC may be different.
Press Properties:

Switch on only TCP/IP V4 and uncheck the rest.
Now press properties of the TCP/IP settings:

The PC LAN adapter gets IP Address 172.22.2.101.
The USBCNC CPU network is setup for 172.22.2.100.

Press OK, now you can test if the network is working, click the Windows Start button, select all programs ==> accessories==>command prompt.
In the command prompt, enter ping 172.22.2.100, when connection OK, you should see:
When connection Failed, you will see:

![Image of a command prompt showing a ping failure]

If you have this, check your cable and your network settings again. Also check that the yellow LED on the CPU is flashing at approximately 1Hz.

1.4.3 Set admin mode

After the install you will have the program ICON on your desktop. Do not start it yet, read further.

![Image of the USBCNC4 icon]

USBCNC must be started as Administrator and the user starting it must have admin rights. The first can be done by right clicking the mouse on the USBCNC icon and then select run as Administrator on Windows 7. The second must be done in the user account settings. On XP this is generally not needed because most of the time you are already Administrator. The Admin rights are needed because USBCNC needs real-time priority.

To avoid having to do this every time, you can change the properties of the ICON by right clicking on the ICON and set the check “Run this program as Administrator”.

![Image of the icon properties with the check for running as administrator]

You can start USBCNC now by clicking the shortcut and begin setting the connection parameters.
The user interface

There are several views:
Operate, Program, Tools, Variables, Setup and Help.
Using control-tab, you can tab through them.

It is important that USBCNC is started as administrator. On windows 7 this is not automatically done like in XP.
Click on the right mouse button and select “Run As administrator”. You can also set this in the ICON properties, compatibility.

When you start USBCNC for the first time you will get the Terms/Guarantee page click the language you read the text. Then click agree if you agree. The operate page is shown. This is the main screen to do all machine operation’s from. But first some settings must be filled in before you can start, so go to the setup page.

Running a program and fast jogging is only possible after the machine is correctly homed, so this must be setup first. The reason is that collision prevention is not active when the machine isn’t homed, so damage to the machine may happen when homing is not performed.

2.1 Setup Page’s

Before the system is actually used we have to setup the system to accommodate the machine, we do that in the setup page’s. There a two main setup pages:

Setup Page 1:
2.1.1 UI and Connection

Connection to CPU: If you have 1 board connected to your PC, leave the setting at AUTO, the software will find the board automatically. Otherwise choose the CPU you want to work with. For CPU’s with USB, you see the COMx ports here, in case of a CPU5 with Ethernet, you will see the IP-Address here.

Ethernet: If you have a CPU with Ethernet, check the Ethernet checkbox.

Language setup: Speaks for itself. After it is set, save the changes, then close USBCNC and restart so that everything will be in the correct language. The translations are in two files, cncgui-lang.txt and cncserver-lang.txt, if you find translation mistakes you can correct this here. Please send the corrected file to Eding CNC, the corrections will then be incorporated into new versions.

Password: You can protect the setup parameters from being modified by unauthorized persons by using a password. Leave empty if no password is desired.

INCH: Machine setup is in inch mode.
MM: Machine setup is in mm mode.

2.1.2 Motor setup

Visible: Check if the axis should be visible in the GUI.

Mode: Select mode for rotation axes, slave or special function:

- **ROT**, default, axis behaves as a normal rotation axis.
- **SLAVE** X, SLAVE Y or SLAVE Z axis is slave of X or Y or Z axes, for Gantry machines with two independent (Tandem) motors on the main axes. See also the Homing chapter for details on Slave axes.
- **FOAM CUT** for A-Axis, if used as a Foam cutter with 4 linear axes. X is the left horizontal axis, Y is the left vertical axis, A is the right horizontal axis and Z is the right vertical axis. Feed calculations are based on the X/Y or A/Z combination which ever makes the biggest distance,
- **4th MILL**, if used in 4 axes milling. Feed calculations are optimized such that the tooltip gets the correct speed relative to the material.
- **Tangential Knife**, this option is available for the C-Axis only. The Knife will rotate in the movement direction of X-Y. See also trajectory setup.

Steps/AppUnit: Fill in number of steps per millimeter for millimeter mode or number of steps per inch for inch mode. Fill in a **negative number to reverse** the motor direction. Example: Suppose your driver is set to 1600 steps/revolution (1/8 micro step) and you have coupled the motor directly to a spindle with 5mm pitch. The number to be filled in here = 1600 / 5 = 320. If the movement direction is wrong, change it to -320.

Positive limit: Maximum machine position.
Negative limit: Minimum machine position;

Vel: Maximum axis velocity, all velocities, whether jogging, G0/G1/G2/G3 are limited to this value.
Acc: Maximum acceleration.
2.1.3 Homing and ESTOP setup

Home Vel/Dir: Homing velocity, a **negative number** reverses the homing **direction**.

When the velocity is set to 0, the axis is homed **manually**, see the homing and coordinate systems chapter.

Home Position: Machine position at the moment the home switch activated. This determines the machine coordinates. It is not really relevant where the machine zero point lies, it should only match with the MIN/MAX position.

Homing sensors should be setup such that they remain active until the mechanical end of the machine. The space from home sensor activation to mechanical end is required to ramp down the movement.

<table>
<thead>
<tr>
<th>Machine Mechanical Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home Sensor behavior, good</td>
</tr>
<tr>
<td>Home Sensor behavior, WRONG!</td>
</tr>
</tbody>
</table>

Use only home X for all axes:
Check this option if you have all home sensors wired to one input.

HomeSensorIsEStop:
The home sensors can also be used as limit switch which generate an E-Stop when activated. When this function is required, the sensors should be mounted outside the normal machine area.

Check this option if the home sensors work as EStop when activated. This option will work after homing is complete. The reason is that otherwise homing itself will generate an E-Stop.

EStopInputSenseLevel:
Use this if you have an external emergency button connected.

HomeInputSenseLevel:
Defines EStop input behavior,
0 = low active (normally open switch),
1 = high active, (normally closed switch).

set the level of your end of stroke switches, these are used for homing the machine. First check that the home sensors or switches are working, activate them and look at the home-LED's at the lower left side of the main Operate screen. If you see it working, take care that the machine axes are at the working area, so that none of the sensors are activated. Look at GUI "LEDs"
EStopInputSenseLevel1:
Defines EStop input behavior,
0 = low active (normally open switch),
1 = high active, (normally closed switch).
2 = OFF

EStopInputSenseLevel2:
Defines EStop input behavior for second EStop input (CPU5B only),
0 = low active (normally open switch),
1 = high active, (normally closed switch).
2 = OFF

ExtErrInputSenseLevel, CPU5B ONLY:
Defines External Error input behavior (CPU5B only),
0 = low active, e-stop (normally open switch),
1 = high active, e-stop (normally closed switch).
2 = OFF
3 = low active, smoothstop
4 = high active, smoothstop
With smoothstop the axes speed is ramped down, this means that there is no position loss.

The polarity settings for the home inputs, E-stop's and Extern error can be automatically determined by pressing the "Auto detect polarity" button.

2.1.4 Backlash setup

Backlash: Set the amount of backlash for each axis that the software should compensate. Experiment with velocities and acceleration, the backlash compensation demands more from your motors than without backlash compensation. Do not try to compensate more than 0.1 millimeters. If there is more backlash, try to reduce it mechanically first. The backlash compensation superimposes a second movement (the backlash) on top of the normal movement when the direction reverses. You can see the impact on the motion profile in the figures below. Here you can see the extra demands on the motors. Especially look at the extra acceleration that is caused by the backlash compensation. A non micro step drive in combination with a relative good motor may not be able to follow the profile.

A movement from 0 to 10 mm without direction reversal. It is a beautiful 3rd order profile as you can see. The numbers on the X axis are 10 ms units, total move is about 1.37s.

The next figure shows the same movement with direction reversal. The compensation value is 0.25 mm for this measurement, this is a relative large value.
2.1.5 Trajectory setup

MAXFREQ: The maximum step frequency that the CPU will generate. It is sometimes required to lower the maximum frequency, e.g. in case because the drive is unable to handle the high step rate. For instance, when you build the PICSTEP driver and want to use it, do not set the max frequency to 50 KHz, because the PICSTEP driver cannot handle frequencies above 50 KHz.

LAF minimum angle: Look Ahead Feed calculations: Motion segments that are connected with a smaller angle as specified in min.angle will accelerate through which will give higher speeds especially with programs consisting of small motion segments. This is a unique feature which you don't find easily on low cost CNC controllers. Be carefully with the min.angle setting because this cause acceleration spikes, it depends on your machine and the speed up till what extend this is possible. I suggest performing tests with en check whether you get step pulse loss. A value of 0.1 .. 3 degrees is generally safe. Segments that are really tangential connected will move fast that way.

An example of what I use: When using CorelDraw, a circle is drawn of 100mm in diameter, and exported as HPGL CorelDraw generates small line segments of approximately 6 degrees. Now I have set the min.angle to 6, this gives the possibility to mill the circle with a speed of F6000 while without LAF the speed would be approx F1300 on my machine.

2.1.6 Kinematic Setup

Trivial kinematics: It is not needed for normal Cartesian machines, leave the Trivial 1:1 kinematics checked. Please contact Eding CNC if you have a special machine or robot with non Cartesian axes.

2.1.7 Tool change Area

XYZ Limits: By setting the limits here to a value different from zero, the TCA (Tool Change Area) guard will be activated. Using the values here you define an area on the machine which is restricted to tool change. A normal work piece program is not allowed to enter this area.

Z DownToolLength: For machine configurations where the tool chuck does not touch the machine bed when the machine is at its lowest Z position. Here you specify the tool length of the tool that fits when Z is at its lowest position. This information is important for collision guarding.

2.1.8 Tangential knife setup

TanKnife Angle: Tangential Knife is a rotation motor (the C Axis) around Z. Tangential Knife works with normal G1, G2, G3 without tool-radius compensation G41, G42. The knife is rotated automatically in the direction of the X-Y move. This parameter determines the angle which 2 lines/Arcs can make without lifting the Z. If the angle is greater as this value, the Z will move up (G0), rotate the knife (G0), then move down again (G1). If the angle is lower, the rotation will take place without moving Z up. The tangential knife is switched on by interpreter command tanknife on and switched off by tanknife off interpreter command. If you wish, you can assigne those commands to user buttons.
TanKnife Z up distance:
Specifies the distance to lift up Z when detected angle is greater than Tan
Knife Angle.

2.1.9 Safety Input

Safety Input Selection: Select one of the AUX inputs to act as safety input, when active, only low
speeds are possible and the running g code goes to pause (Feedhold,
spindle off). This can only be configured for CPU5B.

Safety Feed: Feed in [mm/s] to be applied when the safety input is active and when the
machine is not homed and homing is mandatory is set.

2.1.10 Spindle and PWM setup

MaxS: The speed of your PWM controlled spindle when the PWM signal is
at 100%.

MinS: The lowest possible speed for you spindle. If a command for a
lower S values is used, then this minimum value is applied.

Ramp up Time: The software waits this time between switching on the spindle and
starting the further machining.

Proportional Ramp up Time: Ramp up time is proportional with requested speed. Suppose your
Maximum speed is 24000 and ramp up time 10 second. The a
speed command of 12000 will give a ramp up time of 5 second.

ShowRPM: Check this when you want to see the RPM's, this works also if you
have no RPM sensor, a calculated value is displayed in this case.

RPMSensor: Check if you have connected a spindle speed sensor to the Sync
input of the CPU. The sensor should give 1 pulse/revolution,
minimum pulse width 0.5ms.

MistIsSpindleDirection: Special for CPU5A, use mist output for spindle direction if you need
it (CPU5A has no separate spindle direction output, that is why).
2.1.11 UI setup items

Invert JogKeys: Inverts the movement of the keyboard keys, for moving bed machines, the bed moves in the direction you press the arrow.

IsTurningMachine: Check if your machine is a Lathe, this effects mainly the 3D display which shows the X-Z plane for turning. Also the jog keys operate differently. Further the working plane is set to G18 (X-Z).

ShowStartupScreen: When checked, the startup screen is shown when USBCNC starts.

HomingMandatory: When checked, running a job and mdi is not allowed before the machine is homed. Also the jog speed is limited to 5% speed. This feature prevents damage to your machine because when the machine isn’t homed, the limit guards are not working. So, I advise to leave this item checked always.

SimpleZeroing: If checked, the zero buttons (beside the position display), will simply set the work position to zero. If this item is not checked, a dialog will be shown in which you can set the position. Default it shows a value which is – tool-radius of the current tool. This is handy when zeroing from the lower left corner with the endmill against the material.

AutoToolChange: If checked the running job will not stop when a toolchange is encountered. Use this when you have a ATC or if you simply always have the tool already in.
ShutDownOnFatal: If checked software will shutdown automatically when a fatal error such as disconnected CPU occurs. This may be used when the electrical power is switched off and connection to the CPU gets lost.

Favorite Editor: Specify your favorite editor here. I recommend notepad++, it is freely downloadable at internet. E.g. for notepad++, specify c:\program files\notepad++\notepad++.exe. The advantage of notepad++ is that the editor jumps to the actual G-Code line immediately, very handy when programming G-Code.

IconDirectory: The name of the directory where the GUI icons are located. nu means not used. If you want to change the Icons on the buttons, you can make first a copy of the entire icons and name that directory to myicons. Make your changes and place the directory name in this field.

OpenGL: Check to use OpenGL graphics. This allows smooth panning, zooming and rotation using the mouse. Left mouse key: Pan Right mouse key: Zoom Control+Left mouse key: Rotate.

openGLPenZise: Set PEN size shown in graphic, size is in millimeter.

2.1.12 Load/Run Automatically

watchFileChanged: If checked USBCNC will watch the loaded g-code file for changes on disk if USBCNC is not running. When it is changed, e.g. by an editor or because it is saved by a CAM software, then USBCNC will ask you to reload the file:

load automatically: If this is checked, the file is automatically loaded when it changes on disk, no dialog will appear.

run automatically: If this is checked and also the load automatically check, then the file will be loaded and immediately start running when changed on disk.

fileName: This is the name of the file that USBCNC watches at startup. So if USBCNC is started and this file time/date changes on disk, it will be loaded. If manually another g-code file is loaded, then USBCNC will watch that one.

2.1.13 IO setup

Invert IO: Check if you want to invert the output, e.g. the PICSTEP 4 card amp is enabled when the signal is low. Goto the main operate window and press reset, the amplifiers should be enabled. Try to jog by pressing the arrow key’s. If there is
no movement, go back to the setup screen and check the Amp Enable inversion. Press save, go back to Operate, press reset and try again to move. If still not moving, check your hardware.

2.1.14 Traffic light setup

Red: Specify output for RED color.

Yellow: Specify output for YELLOW color.

Green: Specify output for GREEN color.

CPU5B is required to view all colors because other CPU’s do not have enough amount of outputs.

2.1.15 Interpreter settings

DiameterProgramming: Check if you want diameter programming for turning, all X-axis values are interpreted as diameter. The effect is that all movements in the X-axis are divided by 2.

AbsoluteCenterCoords: If Checked, the I,J,K value is interpreted as absolute value. Incremental is used mostly.

LongFileModeCriterion: Specify a number of Kbytes here. When the loaded job file is larger, the UI switches to long file mode. The program listbox changes and the graphics will show only outlines when a program is loaded. This is all needed to preserve memory and speed for large files. In this mode the file itself is still executed from memory and allows complex G-Code constructs (While, If then else, sub routines).

SuperLongFileModeCriterion: Specify a number of KBytes here where super long file mode starts. This number should be equal or bigger as LongFileModeCriterion. For very long files from 20MByte and UP to 4G this mode is required. It also puts the GUI in the same mode as with LongFileMode, but as extra, the file itself is no longer executed from memory. The means that complex G-Code constructs are no longer possible. These type of files generally contain only G1, sometimes G2, G3, and Tool changes M6Tx. The toolchanges are still executed from the macro.cnc file, so full automatic toolchange is still available. Files with up to 100.000.000 lines of G-Code have been tested with this.

Macro Filename: Name of the macro file, it can be changed, the default is macro.cnc.

2.1.16 JobTimeEstimation

During the Render phase, after loading the job, the job time is estimated. But this is just a quick estimation because a real calculation of time would take too much time, therefore these parameters:

CorrectionFactor: Correction factor for the time calculations, you can change this if you see that your type of jobs require a correction.
RestimateRunTime: When checked, you will see the remaining estimated time of job based on the average speed measured and the total distance to go.

2.1.17 Hand wheel Setup

Cnt/Rev: The number of counts of the hand wheel for one revolution, usually 400 for most CNC hand wheels.

Count: Shows the actual Hand wheel count value, try to turn the hand wheel and see it change.

V[%]: Percentage of velocity from selected axis, this is the maximum velocity the axis will move when using the hand wheel.

A[%]: Percentage of acceleration from selected axis, this is the maximum acceleration the axis will move when using the hand wheel.

X1..X100 Vel Mode: In velocity mode the most important is that the movement stops immediately when the rotation of the hand wheel stops. The position of the hand wheel will not be maintained if velocity mode is on. The position of the handheld is maintained if velocity mode is off. This also means that the axis may not immediately stop if the hand wheel rotation stops. When turning beyond the limits of the axis, you have to turn back the hand wheel the same amount before the axis starts moving again. My own experience is that it works best to use velocity mode at X100 only. Just play with it to experience the behavior and make your own choice.

FeedOverride: When checked, hand wheel is used to control the FeedOverride. The feed override can be controlled from 0% (Stop) to 300%. The maximum velocity and acceleration specified for the motors will not be violated.

2.1.18 Probing Setup

StoreProbePoints: The touch points are stored in a file when this is checked. This is used for digitizing.

Use Home input 4: If checked home input 4 is used instead of the standard probe input.

File: The file name for storing the touch points. The file is opened at the first probe touch and closed when a M30 command is encountered, usually at the end of the G-Code program.

Camera: Select Camera if used.
2.1.19 CPUOPT

This is special for CPU5A. This button allows to add the 4th axis function on a CPU5A3. So it upgrades from 5A3 to 5A4.

Note: This activation is not needed if you have after you bought a CPU. It is needed only to upgrade from 3 to 4 axes on CPU5A.

These are the steps to follow:
In the dialog check the "enable axis 4" checkbox, enter your name and press get request code:

Send the request code to the supplier.
Copy and paste it into an email and send it to your USBCNC supplier.
To do this double click the code, press ctrl-c, in your e-mail press control-v.

Your supplier will send you a activation code.
Copy and paste this into the activation code area. then press activate.
Do what the dialog tells you, press ok twice, press save changes. and restart. When you press the CPU-OPT button again, you will see that the 4th axis is enabled and that it is registered with your name.
2.2 OPERATE PAGE

This is the operate page in menu Auto.

![Operate page screenshot]

2.2.1 Operate page introduction

From this screen all machine operation like jogging running etc can be executed. The Operate screen is designed such that it is mouse, mouse-less and touch-screen friendly.

In the middle we see the graphics showing the tool path. Blue/Red when loaded and rendered. Yellow/Green when actually running. So it shows the tool path real-time.

At the left side there are buttons for common used IO:

- Spindle on-off,
- Flood
- Mist Coolant on-off, and
- AUX on-off (e.g. for the machine light).
- MACHINE ON Button (Below Home C led)

This one has a few colors with different meaning:

- Grey means machine is off, drives switched off.
- Green flashing, machine is on but not all axes are homed, homing required.
- Green, machine ON
- Red flashing, E-Stop button on machine is active.
- Red, E-Stop button released but reset, home required.
- Pressing the button switches off the drives.

The right part of the screen shows the axes positions, when homing you use the **machine coordinates** and for all other operations the **work coordinates**.
The buttons beside the axes positions are for zeroing the work position, on the background a G92 command is executed to perform this. The zero buttons can also be found in the zero submenu, especially for people who do not like using the mouse at the machine.

below the machine positions we see the general status window:
You can select FS (Feed Speed), GMT (G-Code, M-Code, Tool) and T (time estimation for running job). There is a shortcut key: ctrl-v to change the selection here.

Feed/Speed
You see the actual value, set value and percentage.
If you do a G1 in this example, the feed will be 60.
If you switch on the spindle with M3, the spindle speed will be set to 100 rev/minute.

[Image of Feed/Speed table]

Pressing control-v will give:

[Image of Feed/Speed status window]

This shows the actual G code and M code status as well as the actual tool number and the machine state, READY, RUNNING etc.

control-v again gives

[Image of Feed/Speed status window]

Here you see the actual running time of a job and also the estimated TOTAL time.

2.2.2 Reset Button F1
This button has to be used after starting the software to enable the drives.
The amplifiers are switched on when pressing the reset button. Try this, you can feel at the motor shaft if the amplifier is on. if you can still turn the motor by hand, you probably need to reverse the amplifier enable polarity in the setup.

But the reset button does more:
- Enable the amplifier
- Recover from Error after you get one
- Stop a running program

2.2.3 Escape Button
This button pauses the current job execution if running.
This is just there for convenience, not for safety emergency stop.
For safety use a real E-STOP button!
2.2.4 The menu's

2.2.4.1 Main Menu

The Main menu looks like this and has a user selectable logo at the right:

- F1 reset, this key comes back un every sub menu
- F2, to home menu.
- F3, to zero menu.
- F4, to auto menu.
- F6, manual data input (ctrl-f6 works always too for MDI)
- F7, machine I/O functions for spindle and coolants.
- F8, graphic manipulation functions.
- F9, jog with keyboard or hand wheel mode.
- F10, jog pad for jogging by mouse or touch screen.
- F11, user menu

2.2.4.2 Home Menu

- F1, reset
- F2 - F7, Home X - Home C
- F8, Home all axes
- F10, go to g28 park position
- F11, go to g30 park position
- F12, return to main menu.

For homing setup see homing and coordinate systems chapter.

2.2.4.3 Zero Menu

- F1, Reset
- F2 - F7, zero x - zero c
- F8, zero all
- F9, measure rotation and apply G68 R..
- F12, back to main menu

F9 measure rotation is a feature that makes life easy. It automatically corrects your work piece/clamp for rotation. This means that you no longer have to spend time to setup your clamp / material very accurately, USBCNC will automatically correct for you.

2.2.4.4 Auto Menu

- F1, Reset
- F2, Load G-Code file
- F3, redraw (re-render whole program through g-code interpreter)
- F4, run/pause
- F5 rewind job
- F6 start editor
- F7 set start line of job / store current position of job after pause.
- F9, +Feed Override
- F10, - Feed Override
- F11, Show Nesting options.
- F12, back to main menu

F7, set start line will give next popup dialog:

If you have stopped while Paused, the line number will show the current line of the job. This happens also when you have pressed reset when paused.

Not that reset when pause is needed when you need to do e.g. a tool change. During Pause only jog movements are allowed.

You can store and retrieve the stored line number using the Store/Get Stored buttons.

Press search to run the interpreter in Search mode up to the given line number.

The graphic shows the search.

When you press the RUN button (F4) after a search or pause, the following popup dialog appears:

The Z >>> button will start move Z completely up.

The M6 T1 button shows the tool according to the interpreter. This button is not visible at a start after Pause, only at start after search.

If the color is green the current tool matches the tool from the search status.

If the color is red, the tool doesn't match and you can start a tool change by pressing the button.

The Axis button show the position according to the interpreter on the searched line, green is match, red is no match, press the button to move the axis to the correct position, you can do this for all axes.

If any axis isn't synchronized, it will be done automatically when the start button is pressed.

The M8/M7 On buttons allow to switch on the Coolants.

The S button switches the spindle On with correct S value from the Search status.

F= Plunge rate is the feed rate for the movement towards the work piece, you can change this to a good value you want.

As last, the Run button, this will start a G1 with F towards the search positions, then restore the Feed to the search feed and start machining from there. This way you are able to easily start half way in a g-code program.
F11, Nesting:

Nesting is a feature that allows to produce a product multiple times in X/Y ROWS:
Nesting is reachable if the machine is in READY state, you can always press RESET to get it in ready state if it
isn’t.

Material size: set the material size in X and Y, it is shown in the graph.
Start offset: set an offset for starting, play with it and you will see what it does.
Pitch: the distances in X,Y of the products.
Number: Specify the number of products.
Max: USBCNC will determine the max number of products.

App: Apply the current setting to the program.
Can: Cancel nesting, back to only one product.

The Nest button F11, can be pressed to show/hide the nesting dialog.

Nesting internally uses coordinate system offset G59.3, the coordinate system offsets may not be used in the
program, otherwise nesting will not work, so no G54 .. G59.3 allowed in the program.
G92 is allowed, but if changed must be set back to the original value at the end of the program.
The program must end with M30 otherwise nesting will not work.

The values above can also be set in the G-Code file like so:
%mx=200 Material size X
%my=200 Material size Y
%dx=200 the delta X or pitch X
%dy=200 the delta Y or pitch Y
%ox=200 the offset X
%oy=200 the offset Y
After pressing the App button, the nesting is applied to the program and shown:

Recommended is to create the g-code file for the product such that X0 Y0 is at the lower left side.

If you like to start not at the beginning, use the goto-line function and apply the NX NY values.

Happy production with Nesting!
2.2.4.5 IO MENU

- F1, Reset
- F2, drivers on/off
- F3, spindle on/off
- F4, spindle direction left/right
- F5, flood coolant on/off
- F6, mist coolant on/off
- F7, aux1 output on/off
- F9, Speed -
- F10, Speed +
- F12, back to main menu

2.2.4.6 GRAPHIC MENU

- F1, reset
- F5, switch between 2D X/Y plane and 3D iso-metric view.
- F6, zoom fit
- F7, zoom out
- F8, zoom in
- F9, zoom machine
- F10, clear
- F11, redraw (re-render whole program through interpreter)

The graph view shows a grid of **50mm** in mm mode or **2 inch** in inch mode projected on the machine bed (X-Y surface). For a representative view it is important that the axes limits are correctly filled in and that the machine is homed manually or automatic. The current work coordinate system origin is shown as a cyan colored cross in the x-y plane. When you press the preview update button, a preview is shown of the loaded G-Code program. The preview is created by running the entire g-code file through the interpreter. So when interpreter errors occur, it shows in the log window and in the operate view the program list box shows the wrong line in red color. Note that there can be inaccuracy in what the display shows, this is there because of performance and memory usage limitation reasons.

Zooming, rotate, pan, 2D/3D view and other possibilities are found in the graph sub-menu, see the example below.

With OpenGL activated in the setup, real-time pan, rotate and zoom is possible with the mouse also:

- pan : left mouse button
- rotate : left mouse button + control
- zoom : right mouse button.
2.2.4.7 JOG MENU

- F1, Reset
- F2, jog mode continuous
- F3, jog mode step 0.01
- F4, jog mode step 0.05
- F5, jog mode step 0.1
- F6, jog mode step 0.5
- F7, jog mode step 1
- F8, jog mode step user value
- F9, jog mode hand wheel / mpg X1
- F10, jog mode hand wheel / mpg X10
- F11, jog mode hand wheel / mpg X100
- F12, return to main menu

2.2.4.8 JOG PAD

Jog by mouse, F12 return to main menu.
The function is similar to the jog menu, but it has some extra functionality with jog step.
When “Shift Coordinate System” is checked, jog-step functions as normal, the axes move one step at a time. The work position however remains the same. This is accomplished by modifying the active G92 offset. It is useful when e.g. during engraving you want to run the G-Code program again, but a little deeper in Z. E.g. you want to run the program 0.1 mm deeper, select jog step 0.1 and check “shift coordinate system”. Now press the arrow down button to move Z 0.1 mm down. Notice that the axis moves down but that the position remains the same. When you run your engraving program again the engraving will be 0.1 mm deeper into the material.

This option is also very handy during turning. Your program has run and you measure the work piece and see its diameter is still a bit too big. So now use the –X button to compensate the diameter. Run the program again and your work-piece diameter will be correct.

The amount of shift is shown at the right side. To reset the value to 0, which has no influence on the active offset nor machine position, uncheck, and then check “shift coordinate system”.

2.2.4.9 User Menu

- F1, Reset
- F2, Zero the Z coordinate using a flexible toolsetter positioned on top of the material, see [ZERO TOOL MACRO](#) chapter.
- F3, measure the tool length and put the length in the tool-table using a fixed toolsetter, see [TOOL MEASUREMENT MACRO](#) chapter.
- F4 - F11, user function user_3 .. user_10, user defined functions in macro.cnc
- F12, return to main menu.
2.2.5 Operate page tasks

2.2.5.1 STARTUP
When you just started the application you have to press reset F1.
This will enable the drives, the machine on button left will be green flashing, this means the machine is ready
but must be homed first.

2.2.5.2 HOMING
Homing is the next step to perform, this can be done via main->f2.
There you can do individual axis homing or home all axes art once.
For homing setup see homing and coordinate systems chapter.
All axes home at once can also be done using ctrl-h or the home all button beside the status:

2.2.5.3 LOAD AND RUN A G-CODE FILE
After homing we a ready to run a program, we have to load a g-code file for doing that.
From the main menu press F4 (Auto), then F2 (load g-code file).
Go to the cnc-jobs directory and load demo.cnc.
The file is fully parsed through the g-code interpreter and the tool path is shown in the graphic window:

Using the mouse (ctrl+left mouse), you can rotate the tool-path and see it 3D.
Using the left mouse, you can PAN.
Using the right mouse you can ZOOM:
It can be that while loading you get a collision error, this means that the tool-path does not fit on the machine, so a shift of the work coordinate system is needed:

The yellow rectangle shows the first place where the collision is discovered. We see here clearly that a part of the tool-path is outside the machine area, a message is given showing the line number L9 in this case where the collision occurred.

The easiest way to shift now is to jog to the place where you want to have the origin, the actual place of the work-coordinate system origin is shown as the cyan lines for X and Y.
We jog about 200 mm to the left (X-) and the Z axis about 10mm up so that our first attempt will be milling in the air.

The we press the zero buttons beside the coordinate display for X and Y, this sets the coordinate system to the current position. Now we need to press redraw, to show the tool-path again, now with shifted coordinate system:

We see that the tool path fits without collision and we see the delta's in X, Y, Z, which is the size of the tool path. Control F3 is also possible, this redraws and zooms to fit:
Now we can press run (F4) to run the program. We have no automatic tool changer, so the program stops when a tool change is encountered asking us to put in the tool. The tool is already in, so we press F4 again, the program will continue and our machine is working.
We see the tool path being drawn real-time on the screen:
2.3 PROGRAM PAGE, DXF AND HPGL IMPORT

USBCNC uses a build in CAD/CAM library for these advanced import functions. You can load a file and then perform one of these operations:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Loads a DXF or HPGL file</td>
</tr>
<tr>
<td></td>
<td>Select engraving, this is milling over the lines from the drawing.</td>
</tr>
<tr>
<td></td>
<td>Select profiling, this is for milling out objects and taking the tool diameter into account.</td>
</tr>
<tr>
<td></td>
<td>This is for pocketing, to mill out the complete object.</td>
</tr>
<tr>
<td></td>
<td>Drilling, draw points in the DXF file to use this.</td>
</tr>
</tbody>
</table>
After loading a DXF file, all layers will be visible. You can unselect layers at the right side, such that you see only the part that you want to use. You also can change the origin of the drawing by pressing the appropriate button under the layer selection list box. The positions of the buttons give the positions of the origin. So e.g. when you press the upper right button, then the most upper right position of the drawing will become x=0, y=0 when milling.

The DXF import supports:
- Lines
- Arcs
- Circles
- Poly lines with arcs
- Points for drilling

The workflow of using these features is:
1) Load drawing
2) Select the correct layers
3) Apply origin offset if wanted
4) Set correct parameters
5) Calculate tool path
6) Save tool path and optionally immediately load it for milling.

Parameters involved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save-Z</td>
<td>When moving from one region to another, the machine goes to this height.</td>
</tr>
<tr>
<td>Start-Z</td>
<td>Z value where the tool touches the material to be machined.</td>
</tr>
<tr>
<td>Final-Z</td>
<td>Z value specifying the milling depth lowest Z value. Final Z must be lower than Start Z.</td>
</tr>
<tr>
<td>Z Increment</td>
<td>This specifies the step size when machining in passes.</td>
</tr>
<tr>
<td>Feed rate</td>
<td>Milling feed (F) in mm/min</td>
</tr>
<tr>
<td>Plunge rate</td>
<td>Feed (F) that the Z moves down into the material also mm/min</td>
</tr>
<tr>
<td>Spindle speed</td>
<td>S value for spindle.</td>
</tr>
<tr>
<td>CW/CCW</td>
<td>Spindle direction (M3/M4)</td>
</tr>
<tr>
<td>Tool number</td>
<td>This is only used for the M6 tool change command</td>
</tr>
<tr>
<td>Tool Diameter</td>
<td>Diameter of the tool for the offset and pocketing calculations.</td>
</tr>
<tr>
<td>Method</td>
<td>Outside/inside/clockwise/counterclockwise operation</td>
</tr>
<tr>
<td>Finish allowance</td>
<td>Material that is left for the finishing pass when pocketing. This finishing pass is at full depth for getting a clean edge.</td>
</tr>
<tr>
<td>Step size</td>
<td>Step oversize for pocketing, this value should be lower than the tool diameter.</td>
</tr>
<tr>
<td>Laser mode</td>
<td>For profiling, when switched on, the tool will be switched off when moving from one region to another.</td>
</tr>
<tr>
<td>Make bridges</td>
<td>Leave small pieces of material, that prevent you object from falling out (and get damaged) when profiling.</td>
</tr>
<tr>
<td>Bridge distance</td>
<td>Approx distance, the exact distance is calculated such that all bridges have equal distance.</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>BridgeFinalZ</td>
<td>Lowest Z value for bridge, this value should be between startZ and finalZ.</td>
</tr>
<tr>
<td>BridgeWidth</td>
<td>The width of a bridge.</td>
</tr>
</tbody>
</table>

When the parameters are set, press calculate tool path, it will be visualized on the screen.

Here an example of profiling with bridges:

![Example of profiling with bridges](image)

Note: The offset and pocket calculation might not always work, this is usually because of small errors in the drawing like lines over each other or not connecting lines. Experimenting with the Calculation Accuracy might help. Also check/correction of your drawing may help.

The engraving function is robust and will always work.
2.4 Tools Page

2.4.1 Milling

In this view you can define 99 tools with a length diameter and description. For Lathe operation there is additional and X-Offset and tool Orientation parameter. The tool information is used when you use the tool radius and or tool length compensation functions of the G-Code interpreter commands (G40 – G43). See [chapter 3.6](#) and further.

2.4.2 Tool change

A tool change is performed in G-Code by M6 Tx where Tx is the new tool number. Tool number 0 means no tool. Normally the program is stopped on a tool change, with a user message to change the tool, pressing run again will continue the program. If you don’t want the program to stop, check AutoToolChange in the automatic menu bar. This setting is saved when you press save INI file in the setup screen.

2.4.3 Automatic user defined Tool change ATC

When you want to define you own tool change cycle, you can edit the file "macro.cnc" in the USBCNC directory. When an M6 Tx is encountered, this is translated to a GOSUB of subroutine change_tool in the "macro.cnc" file. This
suproutine then calls further subroutines drop_tool_x and pick_tool_x, if you have a
toolchanger, you can add extra movements to the right tool position and control I/O
for actually changing the tool.

2.4.4 Turning

As you can see, there are 2 additional parameters for turning, X-Offset and
Orientation.
2.5 The Variable Page

This page shows the standard variables used by the G-Code interpreter. It also contains 4 watches to show your own variables if you are going to use the extended programming features. You will understand the meaning of this window after reading the G-Code interpreter functions and extended programming with variables.

The G68 rotation can be reset with the reset button under G68 Rotation. This is the same as entering G69 in MDI.

The G54..G59.3 offsets can be set by entering values and pressing enter. The G54..G59.3 X,Y values can be defined as zero at current machine position by pressing the button. This works similar to G92 offset. The MDI equivalent for setting G55 offsets is G10 L20 P2 X0 Y0.

G92 is normally used for zeroing the machine at work piece coordinates. you can reset all offsets here to zero.

The G28 and G30 positions can be defined at current location by pressing the associated button.
2.6 IO PAGE

At this page you can monitor and set the I/O signals. The page shows only the I/O that are applicable for the attached hardware. The Advantronix part is only available when you have an Advantronix USB I/O card connected.
2.7 HOMING AND COORDINATE SYSTEMS

As I am like most people and don’t want to read a comprehensive manual, but start right away. So I have written this little tutorial, it explains how to home the machine and use the coordinate systems in a simple way. This part is very important to read, you will enjoy operating the machine more if you use the coordinate systems the right way!

When your machine is switched on, all axes can be at any position, these positions are unknown by the software. The software however needs to know the position to show a correct graphic in the graph screen and also for preventing damage to your machine by running beyond the machine limits. The process to match the machine position with the software is called homing. Homing can be done either manually or automatic if end of stroke switches are mounted. This tutorial describes homing.

Here are the homing buttons, F2 from the main menu.

With F2 .. F4 the X..Z axes can be homed individually.

With F8, the home sequence can be started to home all axes in a sequence.

F11 is the same as the button besides the %100 feedOverride display.

What happens is that a few subroutines are called. The subroutines are in the macro.cnc file in your USBCNC installation folder. They look like this:

```
;Homing per axis
Sub home_x
  home x
Endsub
```
A good reader has seen that the order of homing is defined by the `home_all` subroutine and can be customized to your own needs.

2.7.1 Manual homing the machine

Homing is the first thing you always do after switching on the machine, I recommend making a habit of it. Suppose your machine limits are:

- **X**: +300 mm and -300 mm
- **Y**: +200 mm and -200 mm
- **Z**: +100 mm and 0 (0 is the bottom surface of the bed)

Set the Home velocity to 0 for all axes that have no EOS switch.

Mark a point somewhere on the machine that you want to use as home reference point, let’s say **X** = -200.0 mm, which is 100.0 mm from the left edge and **Y** = -150, which is 50.0 mm from the lower edge. For **Z** we take to bottom of the bed at **Z** = 0 mm. This position **x** = -250, **y** = -150, **Z** = 0 is entered in the Home Position values in the set up screen, this need to be done once.

Using the arrow keys, jog the X, Y axes to the marked position on the bed and move the Z completely up to the surface of the machine. When the machine is at the position press the Home button in the Home submenu, F2-F7 for X-C.

Be sure that you have set the home velocities of the axes to zero, otherwise the axes will start to move. Now click the buttons X, Y, Z, and A if you have an A-axis. That is all, the axes are now homed and the software now knows the machine position.

As a side effect, now also the software limit switches are enabled which protect you from jogging further than the machine can go. Also the Software limit guard is on that will stop a running program when going beyond the limits.

You may also have noticed that the position mode is set to “machine”, this is because homing directly affects the machine coordinate system. From this point the machine coordinate system, is not changed any more, it stays as is.

HINT: Move your machine always back to the home position if you are done with the machine. You don’t have to move manually to this point next time when you switch back on the machine. You can do a fast move in machine coordinates like this: g53 g0 x0 y0 z0, or first undo the preset (preset dialog, undo preset) and then do a regular G0.
Another possibility to move quickly to the home positions is using g28, In the variable window set G28 home positions to the same value as the home positions in the set up window. Now you have to type only g28 to go to the home position.

2.7.2 Automatic homing the machine and HomeIsEstop

The machine needs a homing sensor or switch for each axis connected the its home input on the CPU board.

The homing switch is placed at a small distance of the mechanical end of the machine. This distance is needed to ramp down the velocity after the switch is activated.

The sensor should be mounted such that it remains active until the mechanical limit of the machine.

For automatic homing the home velocity needs to be set to another value than zero, use an equal or lower speed than the axis maximum speed. The axis should start to move in the direction where your homing switch is mounted, when it is needed to reverse the direction add a minus sign to the homing velocity. Setup the HomInputSenseLevel correctly. When the led’s are green when the input is not activated put a 1 here, when the led’s are red when the switch is not activated, put a 0. This depends whether you have used normally open or normally closed switch. I recommend normally closed switches here.

Use the homing sub menu to home your axes.

1st Move: The machine first moves until the switch activates, then ramps down and stops.

2nd Move: Then the direction reverses and ramps down when the switch releases.

At the moment of the release of the switch, the position is captured and used to set your machine position correctly.

2.7.3 Tandem axes homing

Tandem axes, one main axis has 2 motors, the correct rotation axis option is set to be slave of X, Y or Z. If the TANDEM axis has individual home sensors for master and slave, the home sequence can be customized such that the TANDEM sets itself straight after homing.

For tandem axes these special interpreter commands exist:

\texttt{PrepareTandemHome}
\texttt{MoveStaveToMaster}

\texttt{HomeTandem}

For the explanation, I assume that the master axis is X and the Slave axis is A.

1. \texttt{PrepareTandemHome X}, Both slave and master are moved towards the home sensor. The axes stop when both axes are on the sensor. When one
axis reaches the home sensor first, this one is stopped and the other moves further. This movement is done when both axes have reached.

2. **Home X**, home the X, the slave will just follow. Because the axes are on the sensor, the move will be off the sensor. The position is latched at the moment the sensor de-activates. Then the movement stops and then the correct position is calculated and set for the X.

3. **Home A**, exactly the same, but now the A is master temporarily and X will follow. At the end the position is calculated and set for the A.

4. At this point both master and slave have a correct known position. It is very important that the home position in the setup matches the actual machine. Now we can straighten the bridge by the command `MoveSlaveToMaster A`. The slave will move to the same position as the master. The bridge is set straight and we are done. (If the bridge is not straight, the home positions in the setup are not correct).

To make this whole sequence more easy, the **HomeTandem X** can be used to do it all at once.

When testing with the individual commands PrepareTandemHome, Home master, Home slave, MoveSlaveToMaster is done, the HomeTandem command can be used.

So if X has a slave Axis, then modify the **macro.cnc** so that subroutine home_x contains:

```cnc
Sub home_x
  homeTandem X
Endsub
```

For a normal, non tandem it would contain:

```cnc
Sub home_x
  home x
Endsub
```

2.7.4 Work versus Machine coordinate system and zeroing

The machine coordinate system does not change, however we want to be able to do the milling of our part anywhere we want on the machine. We will normally use the “work” coordinate system, we can shift it anywhere we want. This can be done with several G-Codes, which are explained in chapter 3, it can also be done using the “preset” button on the operator screen, we’ll see this in a minute.

Suppose our g-code file containing the work piece is created with an origin of X=0, Y=0, Z=0. This is because you have drawn your part in a CAD program beginning from these coordinates and then converted to G-Code.

Now you have put your raw material somewhere on the machine, probably not at coordinates X=0, Y=0, Z=0.

By the way, I prefer to define the upper surface of the material as Z=0, such that a negative Z value goes into the material.
Just move to the zero point of the work piece and there press the zero buttons in the operate screen besides the position display.

For the advanced users: The zeroing can also be done using a measuring probe connected to the probe input. An example is provided in the standard macro.cnc file. Under user_1 you find automatic zeroing. Under user_2 you find interactive tool length measurement.

If you want to do it a more advanced way, look at G55 .. G59.3 and also at the G92 variants.

When homing and zeroing is performed, the milling can start:

When the program is loaded, go to the graphics screen (Alt-g) and press update preview, you will now see exactly where the part is going to be milled at the surface of your machine bed.

Now press the F4 key or the run button to start milling, go to the graphic screen and switch real time graph on to see what the machine is doing.

That’s all for this tutorial, happy milling!
2.8 Keyboard Shortcuts

Besides the already explained keys for jogging etc, there are a few extra, these are special for pendant builders.

<table>
<thead>
<tr>
<th>Function</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control + shift + A</td>
<td>Handwheel on A</td>
</tr>
<tr>
<td>Control + B</td>
<td>Toggle Blockdelete</td>
</tr>
<tr>
<td>Control + shift + B</td>
<td>Handwheel on B</td>
</tr>
<tr>
<td>Control + shift + C</td>
<td>Handwheel on C</td>
</tr>
<tr>
<td>Control D, Control + shift D</td>
<td>Spindle On right, Spindle Off</td>
</tr>
<tr>
<td>Control E, Control + shift D</td>
<td>Spindle On left, Spindle Off</td>
</tr>
<tr>
<td>Control F, +shift</td>
<td>+Feed, -Feed</td>
</tr>
<tr>
<td>Control G, +shift</td>
<td>Run, Pause</td>
</tr>
<tr>
<td>Control H,</td>
<td>Home all</td>
</tr>
<tr>
<td>Control I</td>
<td>Load g-code file</td>
</tr>
<tr>
<td>Control J, + shift J</td>
<td>Jog mode up, jog mode down</td>
</tr>
<tr>
<td>Control K</td>
<td>Toggle Flood</td>
</tr>
<tr>
<td>Control L</td>
<td>Toggle Mist</td>
</tr>
<tr>
<td>Control M</td>
<td>Toggle Aux1</td>
</tr>
<tr>
<td>Control N, Control shift N</td>
<td>Handwheel X1, jog continue</td>
</tr>
<tr>
<td>Control O</td>
<td>Handwheel X10</td>
</tr>
<tr>
<td>Control P</td>
<td>Handwheel X100</td>
</tr>
<tr>
<td>Control Q</td>
<td>Quit program</td>
</tr>
<tr>
<td>Control R</td>
<td>Reset</td>
</tr>
<tr>
<td>Control S, Control + shift + S</td>
<td>+Speed, -Speed</td>
</tr>
<tr>
<td>Control T</td>
<td>Toggle Single line</td>
</tr>
<tr>
<td>Control U</td>
<td>Status tab next, previous</td>
</tr>
<tr>
<td>Control V, Control shift V</td>
<td>Toggle Work/Machine coordinates</td>
</tr>
<tr>
<td>Control W</td>
<td>Toggle MDI</td>
</tr>
<tr>
<td>Control + shift + X</td>
<td>Handwheel on X</td>
</tr>
<tr>
<td>Control + shift + Y</td>
<td>Handwheel on Y</td>
</tr>
<tr>
<td>Control + shift + Z</td>
<td>Handwheel on Z</td>
</tr>
<tr>
<td>Control F1 - control F12</td>
<td>reserved</td>
</tr>
<tr>
<td>Control TAB, Control shift TAB</td>
<td>mode</td>
</tr>
<tr>
<td>Control F6</td>
<td>toggle MDI</td>
</tr>
<tr>
<td>Control 1</td>
<td>Zero x</td>
</tr>
<tr>
<td>Control 2</td>
<td>Zero y</td>
</tr>
<tr>
<td>Control 3</td>
<td>Zero z</td>
</tr>
<tr>
<td>Control 4</td>
<td>Zero a</td>
</tr>
<tr>
<td>Control 5</td>
<td>Zero b</td>
</tr>
<tr>
<td>Control 6</td>
<td>Zero c</td>
</tr>
<tr>
<td>Alt 1</td>
<td>User macro 1</td>
</tr>
<tr>
<td>Alt 2</td>
<td>User macro 2</td>
</tr>
<tr>
<td>Alt 3</td>
<td>User macro 3</td>
</tr>
<tr>
<td>Alt 4</td>
<td>User macro 4</td>
</tr>
<tr>
<td>Alt 5</td>
<td>User macro 5</td>
</tr>
<tr>
<td>Alt 6</td>
<td>User macro 6</td>
</tr>
<tr>
<td>Alt 7</td>
<td>User macro 7</td>
</tr>
<tr>
<td>Alt 8</td>
<td>User macro 8</td>
</tr>
<tr>
<td>Alt 9</td>
<td>User macro 9</td>
</tr>
<tr>
<td>Alt 0</td>
<td>User macro 10</td>
</tr>
</tbody>
</table>
2.9 ZERO TOOL MACRO

User button 1 contains:

```plaintext
2zero tool tip example
sub user_1
    msg "user_1, Zero Z (G92) using toolsetter"
    {Start probe move, slow}
    f30
    g38.2 z-100
    {Move back to touch point}
    g0 z#5063
    {Set position, the measuring device is 43mm in height, adapt for your measuring device}
    g92 z43
    {move 5 mm above measuring device}
    g91 {incremental distance mode}
    g0 z5
    g90 {absolute distance mode}
    m30
endsub
```

The idea is to use a flexible position tool setter and put it on top of the workpiece. Start this function and when done, the Z coordinate is set to 0 at the surface of the workpiece. The feed is set slow F30. A probe move G38.2 is started towards -Z, when the tool setter is touched the position is stored and the movement is stopped. The machine moves exactly to the touch point. G92 is used with a Z value that specifies the height of your tool setter 43 mm in this case. Change to match your tool setter. An incremental movement is started 5 mm upwards, so you can remove the tool setter. The machine goes back to absolute mode and is done.

WARNING: Take care that you fully understand this macro before using it and that you have adapted it for your own tool setter.
2.10 **TOOL MEASUREMENT MACRO**

Under user menu button 2 you'll see this:
```
; Tool length measurement example
Sub user_2
  goSub m_tool ;See sub m_tool
Endsub
```

The user 2 button calls subroutine `m_tool`. This subroutine needs a few values that are stored:

- `#4996`, Z coordinate at tool change safe height
- `#4997`, X coordinate for tool change
- `#4998`, Y coordinate for tool change
- `#4999`, Z coordinate at tool length equals zero or calibration tool height.

Tool #16 is used as reference tool and should have filled in its tool length before you start. This tool length can be 0 if you use the tool-chuck itself instead of a calibration tool.

The values #4996 .. #4999 are to be determined once. This can be done using the `calibrate_tool_setter` function below. Make sure the machine is homed before you start this.

<table>
<thead>
<tr>
<th>Your action</th>
<th>Machine message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open MDI and type : <code>gosub calibrate_tool_setter</code></td>
<td></td>
</tr>
<tr>
<td>Press enter to execute.</td>
<td></td>
</tr>
<tr>
<td>Close the MDI window using F6.</td>
<td></td>
</tr>
<tr>
<td>Go to the tools tab and check the tool length of tool 16. For me it is 0 because I use the tool chuck without calibration tool. Press save changes, and go back to the operate tab.</td>
<td></td>
</tr>
<tr>
<td>The program is still inside subroutine <code>calibrate_tool_setter</code>. Press RUN to continue.</td>
<td></td>
</tr>
<tr>
<td>Do what the message says: <code>Jog Z to safe height</code>. In my case this is completely up. Press RUN to continue</td>
<td></td>
</tr>
</tbody>
</table>
Do what the messages says: **Insert the calibration tool** if you have one, or just leave the tool chuck empty. Jog using X, Y, Z just above the tool setter.

When done **jogging, press RUN**.

The machine will move down to touch the tool setter. The measured tool-chuck height is stored into #4999. Then the Z is moved up to safe height.

<table>
<thead>
<tr>
<th>Job Finished</th>
</tr>
</thead>
<tbody>
<tr>
<td>18:08:53 Info Job started</td>
</tr>
<tr>
<td>18:08:53 Info Probe start state is 1, waiting for 0</td>
</tr>
<tr>
<td>18:08:53 Info Probe start state is 1, waiting for 0</td>
</tr>
<tr>
<td>18:09:43 Info calibration done safe height=x=477.15 y=47.15 tool length=55.3099</td>
</tr>
<tr>
<td>18:09:43 Info Job Finished</td>
</tr>
</tbody>
</table>

Calibration DONE

We need to do this only once.

You need to do this again if you have changed something that influences the calibrated data.

When all calibrated, the **user button F2** can be used to measure the tool length. **Make sure the correct tool is loaded before you start.**

Press **USER BUTTON 2**.

The machine moves to safe height. The dialog is shown:

![Interpreter Dialog](image)

Type **correct values** for tool number, tool length and diameter. **Press OK**.

The machine moves to the correct X,Y. The machine moves 10 mm above the tool setter. So make sure the approx tool length above is OK.

The machine does the move towards the tool setter, then calculates and stores the values. Then machine moves Z to safe height.

Tool Length measurement Complete.
Sub calibrate_tool_setter
 warnmsg "Close MDI, check correct calibration tool nr 16 data in tool table"
 warnmsg "Jog to toolchange safe height, when done press RUN"
 #4996=#5073 ;Store toolchange safe height machine coordinates
 #4997=#5071 ;Machine pos X
 #4998=#5072 ;Machine pos Y
 ;Determine minimum toolchuck height and store into #4999
 g38.2 g91 z-20 f30
 #4999=[#1053 - #5416] ;Probe pos Z = calibration tool length = toolchuck height
 g90
g0 g53 z#4996
 msg "Calibration done safe height=#4996 " X=#4997 " Y=#4998 " Chuck height=#4999
endSub

sub m_tool
 ;Check if toolsetter is calibrated
 if [[#4996 == 0] and [#4997 == 0] and [#4998 == 0] and [#4999 == 0]]
 errmsg "Calibrate toolsetter first open mdi, enter gosub calibrate_tool_setter"
 else
 g0 g53 z#4996 ;Move to safe Z
 dlgmsg "Enter tool dimensions" "Tool number" 5016 "Approx tool length" 5017 "Tool diameter" 5018
 if [#5398 == 1];User pressed OK
 if [[#5016 < 1] OR [#5016 > 15]]
 ErrMsg "Tool must be in range of 0 .. 15"
 endif
 ;Move to toolsetter coordinates
 g00 g53 x#4997 y#4998
 ;Move to 10mm above chuck height + approx tool length + 10
 g00 g53 z[#4999+10+#5017]
 ;Measure tool length and pull 5mm back up
 g38.2 g91 z-20 f30
g90
 ;Back to safe height
 g0 g53 z#4996
 ;Store tool length, diameter in tool table
 #[5400 + #5016] = (#5053 - #4999)
 #[5500 + #5016] = #5018
 #[5600 + #5016] = 0 ;Tool X offset is 0
 msg "Tool length measured=#[5400 + #5016]" stored at tool "#5016"
 endif
 endif
endSub
3 Input: the RS274/NGC Language
This section describes the input language, RS274/NGC.

3.1 Overview
The RS274/NGC language is based on lines of code. Each line (also called a "block") may include commands to a machining center to do several different things. Lines of code may be collected in a file to make a program.

A typical line of code consists of an optional line number at the beginning followed by one or more "words." A word consists of a letter followed by a number (or something that evaluates to a number). A word may either give a command or provide an argument to a command. For example, "G1 X3" is a valid line of code with two words. "G1" is a command meaning "move in a straight line at the programmed feed rate," and "X3" provides an argument value (the value of X should be 3 at the end of the move). Most RS274/NGC commands start with either G or M (for miscellaneous). The words for these commands are called "G codes" and "M codes."

The RS274/NGC language has no indicator for the start of a program. The RS274/NGC language has two commands (M2 or M30), either of which ends a program.

3.2 RS274/NGC Language View of a Machining Center
The RS274/NGC language is based on a particular view of what a machining center to be controlled is like. The view is as described in Section 2.1, with the changes described below. The RS274/NGC language view includes one mechanical component not known to the canonical machining functions: a cycle start button. The use of the button is described in Section 3.6.1.

The RS274/NGC language contains commands that change the way subsequent commands are to be interpreted, but do not tell the machining center to do anything. These are not covered in this section, but are dealt with as they arise in Section 3.5.17, Section 3.5.19, and Section 3.5.20.

3.2.1 Parameters/Variables
In the RS274/NGC language view, a machining center maintains an array of 5400 numerical parameters. Many of them have specific uses. The parameter array should persist over time, even if the machining center is powered down. USBCNC stores the parameters that have specific use only. This is performed when the user presses the "Save Fixtures" button in the variable view. The specific parameters are listed in the table below. Other parameters in range of 1..5400 are free to use in your G-Code program.
A simple example of usage:
#1=100 ; assign the value 100 to variable #1
G0[#1] ; use #1 to move to 100
<table>
<thead>
<tr>
<th>Parameter number</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4999</td>
<td>Free to use, note that 4996 – 4999 are used by the tool length measurement function under user button 2.</td>
</tr>
<tr>
<td>4000-4999</td>
<td>Free to use, persistent.</td>
</tr>
<tr>
<td>5001-5006</td>
<td>POS X – C, interpreter position = work position</td>
</tr>
<tr>
<td>5008</td>
<td>Actual TOOL #</td>
</tr>
<tr>
<td>5009</td>
<td>Actual TOOL Radius</td>
</tr>
<tr>
<td>5010</td>
<td>Actual TOOL Z offset</td>
</tr>
<tr>
<td>5011</td>
<td>New tool during tool change</td>
</tr>
<tr>
<td>5012</td>
<td>Actual tool X offset</td>
</tr>
<tr>
<td>5013</td>
<td>Actual G43 Z offset</td>
</tr>
<tr>
<td>5014</td>
<td>Actual G43 X offset</td>
</tr>
<tr>
<td>5015..5050</td>
<td>Used in tool change sub routine</td>
</tr>
<tr>
<td>5051 - 5056</td>
<td>Probe position X – C in machine coordinates</td>
</tr>
<tr>
<td>5061 - 5066</td>
<td>Probe position X – C in work coordinates</td>
</tr>
<tr>
<td>5067</td>
<td>1 if probe is triggered after G38.2, 0 otherwise.</td>
</tr>
<tr>
<td>5068</td>
<td>Actual Probe value</td>
</tr>
<tr>
<td>5069</td>
<td>Handwheel counter.</td>
</tr>
<tr>
<td>5071-5076</td>
<td>POS X – C, interpreter position without offsets = Machine position.</td>
</tr>
<tr>
<td>5161 - 5166</td>
<td>G28 home X - C</td>
</tr>
<tr>
<td>5181 - 5186</td>
<td>G30 home X - C</td>
</tr>
<tr>
<td>5211 - 5216</td>
<td>G92 offset X - C</td>
</tr>
<tr>
<td>5220</td>
<td>Coord. System number</td>
</tr>
<tr>
<td>5221 - 5226</td>
<td>Coord. System 1 X – C</td>
</tr>
<tr>
<td>5241 - 5246</td>
<td>Coord. System 2 X – C</td>
</tr>
<tr>
<td>5261 - 5266</td>
<td>Coord. System 3 X – C</td>
</tr>
<tr>
<td>5281 - 5286</td>
<td>Coord. System 4 X – C</td>
</tr>
<tr>
<td>5301 - 5306</td>
<td>Coord. System 5 X – C</td>
</tr>
<tr>
<td>5321 - 5326</td>
<td>Coord. System 6 X – C</td>
</tr>
<tr>
<td>5341 - 5346</td>
<td>Coord. System 7 X – C</td>
</tr>
<tr>
<td>5361 - 5366</td>
<td>Coord. System 8 X – C</td>
</tr>
<tr>
<td>5381 - 5386</td>
<td>Coord. System 9 X – C</td>
</tr>
<tr>
<td>5230</td>
<td>Reserved for rotation coordinate system 1</td>
</tr>
<tr>
<td>5250</td>
<td>Reserved for rotation coordinate system 2</td>
</tr>
<tr>
<td>5270</td>
<td>Reserved for rotation coordinate system 3</td>
</tr>
<tr>
<td>5290</td>
<td>Reserved for rotation coordinate system 4</td>
</tr>
<tr>
<td>5310</td>
<td>Reserved for rotation coordinate system 5</td>
</tr>
<tr>
<td>5330</td>
<td>Reserved for rotation coordinate system 6</td>
</tr>
<tr>
<td>5350</td>
<td>Reserved for rotation coordinate system 7</td>
</tr>
<tr>
<td>5370</td>
<td>Reserved for rotation coordinate system 8</td>
</tr>
<tr>
<td>5390</td>
<td>Reserved for rotation coordinate system 9</td>
</tr>
<tr>
<td>Parameter number</td>
<td>Meaning</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>5398</td>
<td>Return value for dlgmsg (+1 OK, -1 Cancel)</td>
</tr>
<tr>
<td>5399</td>
<td>Return value for M55, M56</td>
</tr>
<tr>
<td>5401 – 5416</td>
<td>Tool z offset (Length) Tool 1 – Tool 16</td>
</tr>
<tr>
<td>5501 – 5516</td>
<td>Tool diameter Tool 1 – Tool 16</td>
</tr>
<tr>
<td>5601 – 5616</td>
<td>Tool x offset (for Turning) Tool 1 – Tool 16</td>
</tr>
<tr>
<td>5701 – 5716</td>
<td>Tool orientation (for Turning) Tool 1 – Tool 16 (Currently supported only Tool 0 .. Tool 16)</td>
</tr>
</tbody>
</table>

3.2.2 Tool data

<table>
<thead>
<tr>
<th>Tool ID</th>
<th>zOffset (Length)</th>
<th>xOffset (For turning)</th>
<th>Diameter</th>
<th>orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1-9</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1-9</td>
</tr>
<tr>
<td>..</td>
<td></td>
<td></td>
<td></td>
<td>..</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>1-9</td>
</tr>
</tbody>
</table>

3.2.2.1 Tool Orientation for Lathes

When the G18 plane (X-Z) is selected, special LATHE tool radius compensation can be used (G41, G42). Depending on the tool orientation and tool radius an extra offset is applied.

The blue crosses show the radius center of the tool.
The green crosses show the controlled point depending on the tool orientation. For orientation = 9 there is no offset compensation. For orientation = 2, the compensation in X is –tool radius, in Z also –tool radius.
3.2.3 Coordinate Systems
In the RS274/NGC language view, a machining center has an absolute coordinate system and nine program coordinate systems.

You can set the offsets of the nine program coordinate systems using G10 L2 Pn (n is the number of the coordinate system) with values for the axes in terms of the absolute coordinate system.

You can select one of the nine systems by using G54, G55, G56, G57, G58, G59, G59.1, G59.2, or G59.3 (see Section 3.5.13). It is not possible to select the absolute coordinate system directly.

You can offset the current coordinate system using G92 or G92.3. This offset will then apply to all nine program coordinate systems. This offset may be cancelled with G92.1 or G92.2. See Section 3.5.18.
You can make straight moves in the absolute machine coordinate system by using G53 with either G0 or G1.

Data for coordinate systems is stored in parameters, see the previous section. During initialization, the coordinate system is selected that is specified by parameter 5220. A value of 1 means the first coordinate system (the one G54 activates), a value of 2 means the second coordinate system (the one G55 activates), and so on. It is an error for the value of parameter 5220 to be anything but a whole number between one and nine.

3.3 FORMAT OF A LINE
A permissible line of input RS274/NGC code consists of the following, in order, with the restriction that there is a maximum (currently 256) to the number of characters allowed on a line.
- An optional line number.
- Any number of words, parameter settings, and comments.

Any input not explicitly allowed is illegal and will cause the Interpreter to signal an error.
Spaces and tabs are allowed anywhere on a line of code and do not change the meaning of the line, except inside comments. This makes some strange-looking input legal. The line "g0x +0. 12 34y 7" is equivalent to "g0 x+0.1234 y7", for example.
Blank lines are allowed in the input. They are to be ignored.
Input is case insensitive.

3.3.1 Line Number
A line number is the letter N followed by an integer (with no sign) between 0 and 99999 written with no more than five digits (000009 is not OK, for example). Line numbers may be repeated or used out of order, although normal practice is to avoid such usage.
Line numbers may also be skipped, and that is normal practice. A line number is not required to be used, but must be in the proper place if used.

3.3.2 Word

A word is a letter other than N followed by a real value. Words may begin with any of the letters shown in Table 3-2. The table includes N for completeness, even though, as defined above, line numbers are not words. Several letters (I, J, K, L, P, and R) may have different meanings in different contexts.

<table>
<thead>
<tr>
<th>Letter</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A-axis of machine</td>
</tr>
<tr>
<td>D</td>
<td>Tool radius compensation number</td>
</tr>
<tr>
<td>F</td>
<td>Feed rate</td>
</tr>
<tr>
<td>G</td>
<td>General function (see Table 3-4)</td>
</tr>
<tr>
<td>H</td>
<td>Tool length offset index</td>
</tr>
<tr>
<td>I</td>
<td>X-axis offset for arcs X offset in G87 canned cycle</td>
</tr>
<tr>
<td>J</td>
<td>Y-axis offset for arcs Y offset in G87 canned cycle</td>
</tr>
<tr>
<td>K</td>
<td>Z-axis offset for arcs Z offset in G87 canned cycle</td>
</tr>
<tr>
<td>L</td>
<td>number of repetitions in canned cycles key used with G10</td>
</tr>
<tr>
<td>M</td>
<td>miscellaneous function (see Table 3-6)</td>
</tr>
<tr>
<td>N</td>
<td>line number</td>
</tr>
<tr>
<td>P</td>
<td>dwell time in canned cycles dwell time with G4 key used with G10</td>
</tr>
<tr>
<td>Q</td>
<td>feed increment in G83 canned cycle</td>
</tr>
<tr>
<td>R</td>
<td>arc radius, clear_z distance in canned cycle</td>
</tr>
<tr>
<td>S</td>
<td>spindle speed</td>
</tr>
<tr>
<td>T</td>
<td>tool selection</td>
</tr>
<tr>
<td>X</td>
<td>X-axis of machine</td>
</tr>
<tr>
<td>Y</td>
<td>Y-axis of machine</td>
</tr>
<tr>
<td>Z</td>
<td>Z-axis of machine</td>
</tr>
<tr>
<td>A</td>
<td>A-axis of machine</td>
</tr>
<tr>
<td>B</td>
<td>B-axis of machine</td>
</tr>
<tr>
<td>C</td>
<td>C-axis of machine</td>
</tr>
</tbody>
</table>

A real value is some collection of characters that can be processed to come up with a number. A real value may be an explicit number (such as 341 or -0.8807), a parameter value, an expression, or a unary operation value. Definitions of these follow immediately. Processing characters to come up with a number is called "evaluating". An explicit number evaluates to itself.

3.3.2.1 NUMBER

The following rules are used for (explicit) numbers. In these rules a digit is a single character between 0 and 9.
• A number consists of (1) an optional plus or minus sign, followed by (2) zero to many digits, followed, possibly, by (3) one decimal point, followed by (4) zero to many digits - provided that there is at least one digit somewhere in the number.
• There are two kinds of numbers: integers and decimals. An integer does not have a decimal point in it; a decimal does.
• Numbers may have any number of digits, subject to the limitation on line length. Only about seventeen significant figures will be retained, however (enough for all known applications).
• A non-zero number with no sign as the first character is assumed to be positive.

Notice that initial (before the decimal point and the first non-zero digit) and trailing (after the decimal point and the last non-zero digit) zeros are allowed but not required. A number written with initial or trailing zeros will have the same value when it is read as if the extra zeros were not there.

Numbers used for specific purposes in RS274/NGC are often restricted to some finite set of values or some to some range of values. In many uses, decimal numbers must be close to integers; this includes the values of indexes (for parameters and carousel slot numbers, for example), M codes, and G codes multiplied by ten. A decimal number which is supposed be close to an integer is considered close enough if it is within 0.0001 of an integer.

3.3.2.2 Parameter value
A parameter value is the pound character # followed by a real value. The real value must evaluate to an integer between 1 and 5399. The integer is a parameter number, and the value of the parameter value is whatever number is stored in the numbered parameter.
The # character takes precedence over other operations, so that, for example, "#1+2" means the number found by adding 2 to the value of parameter 1, not the value found in parameter 3. Of course, #[1+2] does mean the value found in parameter 3. The # character may be repeated; for example ###2 means the value of the parameter whose index is the (integer) value of parameter 2.

3.3.2.3 Expressions and Binary Operations
An expression is a set of characters starting with a left bracket [and ending with a balancing right bracket]. In between the brackets are numbers, parameter values, mathematical operations, and other expressions. An expression may be evaluated to produce a number. The expressions on a line are evaluated when the line is read, before anything on the line is executed. An example of an expression is [1 + acos[0] - [#3 ** [4.0/2]]].

Binary operations appear only inside expressions. Nine binary operations are defined. There are four basic mathematical operations: addition (+), subtraction (-), multiplication (*), and division (/). There are three logical operations: non-exclusive or (OR), exclusive or (XOR), and logical and (AND). The eighth operation is the
modulus operation (MOD). The ninth operation is the "power" operation (** of raising the number on the left of the operation to the power on the right.

The binary operations are divided into three groups. The first group is: power. The second group is: multiplication, division, and modulus. The third group is: addition, subtraction, logical non-exclusive or, logical exclusive or, and logical and. If operations are strung together (for example in the expression \([2.0 / 3 * 1.5 - 5.5 / 11.0]\)), operations in the first group are to be performed before operations in the second group and operations in the second group before operations in the third group. If an expression contains more than one operation from the same group (such as the first / and * in the example), the operation on the left is performed first. Thus, the example is equivalent to: \([(2.0 / 3) * 1.5 - (5.5 / 11.0)]\), which simplifies to \([1.0 - 0.5]\), which is 0.5.

The logical operations and modulus are to be performed on any real numbers, not just on integers. The number zero is equivalent to logical false, and any non-zero number is equivalent to logical true.

3.3.2.4 Unary Operation Value
A unary operation value is either "ATAN" followed by one expression divided by another expression (for example "ATAN[2]/[1+3]") or any other unary operation name followed by an expression (for example "SIN[90]"). The unary operations are: ABS (absolute value), ACOS (arc cosine), ASIN (arc sine), ATAN (arc tangent), COS (cosine), EXP (e raised to the given power), FIX (round down), FUP (round up), LN (natural logarithm), ROUND (round to the nearest whole number), SIN (sine), SQRT (square root), and TAN (tangent). Arguments to unary operations which take angle measures (COS, SIN, and TAN) are in degrees. Values returned by unary operations which return angle measures (ACOS, ASIN, and ATAN) are also in degrees.

The FIX operation rounds towards the left (less positive or more negative) on a number line, so that FIX[2.8] = 2 and FIX[-2.8] = -3, for example. The FUP operation rounds towards the right (more positive or less negative) on a number line; FUP[2.8] = 3 and FUP[-2.8] = -2, for example.

3.3.3 Parameter Setting
A parameter setting is the following four items one after the other: (1) a pound character #, (2) a real value which evaluates to an integer between 1 and 5399, (3) an equal sign =, and (4) a real value. For example "#3 = 15" is a parameter setting meaning "set parameter 3 to 15."

A parameter setting does not take effect until after all parameter values on the same line have been found. For example, if parameter 3 has been previously set to 15 and the line ",#3=6 G1 x#3" is interpreted, a straight move to a point where x equals 15 will occur and the value of parameter 3 will be 6.
3.3.4 Comments and Messages
Printable characters and white space inside parentheses is a comment. A left parenthesis always starts a comment. The comment ends at the first right parenthesis found thereafter. Once a left parenthesis is placed on a line, a matching right parenthesis must appear before the end of the line. Comments may not be nested; it is an error if a left parenthesis is found after the start of a comment and before the end of the comment.
Here’s an example of a line containing a comment: "G80 M5 (stop motion)". Comments do not cause a machining center to do anything.

A comment contains a message if "MSG," appears after the left parenthesis and before any other printing characters. Variants of "MSG," which include white space and lower case characters are allowed. The rest of the characters before the right parenthesis are considered to be a message. Messages should be displayed on the message display device. Comments not containing messages need not be displayed there.

3.3.5 Item Repeats
A line may have any number of G words, but two G words from the same modal group (see Section 3.4) may not appear on the same line.

A line may have zero to four M words. Two M words from the same modal group may not appear on the same line.

For all other legal letters, a line may have only one word beginning with that letter.

If a parameter setting of the same parameter is repeated on a line, "#3=15 #3=6", for example, only the last setting will take effect. It is silly, but not illegal, to set the same parameter twice on the same line.

If more than one comment appears on a line, only the last one will be used; each of the other comments will be read and its format will be checked, but it will be ignored thereafter. It is expected that putting more than one comment on a line will be very rare.

3.3.6 Item order
The three types of item whose order may vary on a line (as given at the beginning of this section) are word, parameter setting, and comment. Imagine that these three types of item are divided into three groups by type.

The first group (the words) may be reordered in any way without changing the meaning of the line.

If the second group (the parameter settings) is reordered, there will be no change in the meaning of the line unless the same parameter is set more than once. In this case, only the last setting of the parameter will take effect. For example, after the
line "#3=15 #3=6" has been interpreted, the value of parameter 3 will be 6. If the
order is reversed to "#3=6 #3=15" and the line is interpreted, the value of parameter
3 will be 15.

If the third group (the comments) contains more than one comment and is
reordered, only the last comment will be used.

If each group is kept in order or reordered without changing the meaning of the line,
then the three groups may be interleaved in any way without changing the meaning
of the line. For example, the line "g40 g1 #3=15 (foo) #4=-7.0" has five items and
means exactly the same thing in any of the 120 possible orders (such as "#4=-7.0
g1 #3=15 g40 (foo)") for the five items.

3.3.7 Commands and Machine Modes

In RS274/NGC, many commands cause a machining center to change from one
mode to another, and the mode stays active until some other command changes it
implicitly or explicitly. Such commands are called "modal". For example, if coolant is
turned on, it stays on until it is explicitly turned off. The G codes for motion are also
modal. If a G1 (straight move) command is given on one line, for example, it will be
executed again on
the next line if one or more axis words are available on the line, unless an explicit
command is given on that next line using the axis words or cancelling motion.

"Non-modal" codes have effect only on the lines on which they occur. For example,
G4 (dwell) is non-modal.

3.4 Modal Groups

Modal commands are arranged in sets called "modal groups", and only one member
of a modal group may be in force at any given time. In general, a modal group
contains commands for which it is logically impossible for two members to be in
effect at the same time - like measure in inches vs. measure in millimeters. A
machining center may be in many modes at the same time, with one mode from
each modal group being in effect. The modal groups are shown in Table 3-3.

Table 3-3 Modal Groups

<table>
<thead>
<tr>
<th>The modal groups for G codes are:</th>
</tr>
</thead>
<tbody>
<tr>
<td>group 1 = {G0, G1, G2, G3, G38.2, G76, G80, G81, G82, G83, G84, G85, G86, G87, G88, G89} motion</td>
</tr>
<tr>
<td>group 2 = {G17, G18, G19} plane selection</td>
</tr>
<tr>
<td>group 3 = {G90, G91} distance mode</td>
</tr>
<tr>
<td>group 5 = {G93, G94} feed rate mode</td>
</tr>
<tr>
<td>group 6 = {G20, G21} units</td>
</tr>
<tr>
<td>group 7 = {G40, G41, G42} cutter radius compensation</td>
</tr>
<tr>
<td>group 8 = {G43, G49} tool length offset</td>
</tr>
<tr>
<td>group 10 = {G98, G99} return mode in canned cycles</td>
</tr>
<tr>
<td>group 12 = {G54, G55, G56, G57, G58, G59, G59.1, G59.2, G59.3} coordinate system selection</td>
</tr>
<tr>
<td>group 13 = {G61, G61.1, G64} path control mode</td>
</tr>
<tr>
<td>group 14 = {G68, G69} XY plane rotation.</td>
</tr>
</tbody>
</table>
The modal groups for M codes are:
group 4 = {M0, M1, M2, M30, M60} stopping

group 5 = {M54, M55, M56, M64, M65, M66} AUX and general purpose I/O

group 6 = {M6} tool change

group 7 = {M3, M4, M5} spindle turning

group 8 = {M7, M8, M9} coolant (special case: M7 and M8 may be active at the same time)

group 9 = {M48, M49} enable/disable feed and speed override switches

In addition to the above modal groups, there is a group for non-modal G codes:
group 0 = {G4, G10, G28, G30, G53, G92, G92.1, G92.2, G92.3}

For several modal groups, when a machining center is ready to accept commands, one member of the group must be in effect. There are default settings for these modal groups. When the machining center is turned on or otherwise re-initialized, the default values are automatically in effect.

Group 1, the first group on the table, is a group of G codes for motion. One of these is always in effect. That one is called the current motion mode.

It is an error to put a G-code from group 1 and a G-code from group 0 on the same line if both of them use axis words. If an axis word-using G-code from group 1 is implicitly in effect on a line (by having been activated on an earlier line), and a group 0 G-code that uses axis words appears on the line, the activity of the group 1 G-code is suspended for that line. The axis word-using G-codes from group 0 are G10, G28, G30, and G92.

3.5 G Codes

G codes of the RS274/NGC language are shown in Table 3-4 and described in this Section.

The descriptions contain command prototypes, set in **bold** type.

In the command prototypes, three dots (…) stand for a real value. As described earlier, a real value may be (1) an explicit number, 4, for example, (2) an expression, [2+2], for example, (3) a parameter value, #88, for example, or (4) a unary function value, acos[0], for example.

In most cases, if axis words (any or all of X..., Y..., Z..., A..., B..., C...) are given, they specify a destination point. Axis numbers are in the currently active coordinate system, unless explicitly described as being in the absolute coordinate system.

Where axis words are optional, any omitted axes will have their current value. Any items in the command prototypes not explicitly described as optional are required. It is an error if a required item is omitted.

In the prototypes, the values following letters are often given as explicit numbers. Unless stated otherwise, the explicit numbers can be real values. For example, G10 L2 could equally well be written G[2*5] L[1+1]. If the value of parameter 100 were 2, G10 L#100 would also mean the same. Using real values which are not explicit numbers as just shown in the examples is rarely useful.

If L... is written in a prototype the "..." will often be referred to as the "L number". Similarly the "..." in H... may be called the "H number", and so on for any other letter.
3.5.1 Rapid Linear Motion - G0

For rapid linear motion, program \texttt{G0 X... Y... Z... A...}, where all the axis words are optional, except that at least one must be used. The G0 is optional if the current motion mode is G0. This will produce coordinated linear motion to the destination point at the current traverse rate (or slower if the machine will not go that fast). It is expected that cutting will not take place when a G0 command is executing.

It is an error if:
- All axis words are omitted.

If cutter radius compensation is active, the motion will differ from the above; see Appendix A. If G53 is programmed on the same line, the motion will also differ; see Section 3.5.12.
<table>
<thead>
<tr>
<th>G Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0</td>
<td>rapid positioning</td>
</tr>
<tr>
<td>G1</td>
<td>linear interpolation</td>
</tr>
<tr>
<td>G2</td>
<td>circular/helical interpolation (clockwise)</td>
</tr>
<tr>
<td>G3</td>
<td>circular/helical interpolation (counterclockwise)</td>
</tr>
<tr>
<td>G4</td>
<td>dwell</td>
</tr>
<tr>
<td>G10</td>
<td>coordinate system origin setting</td>
</tr>
<tr>
<td>G17</td>
<td>XY-plane selection</td>
</tr>
<tr>
<td>G18</td>
<td>XZ-plane selection</td>
</tr>
<tr>
<td>G19</td>
<td>YZ-plane selection</td>
</tr>
<tr>
<td>G20</td>
<td>inch system selection</td>
</tr>
<tr>
<td>G21</td>
<td>millimeter system selection</td>
</tr>
<tr>
<td>G28</td>
<td>move to park position 1, setup on variable page</td>
</tr>
<tr>
<td>G30</td>
<td>move to park position 2, setup on variable page</td>
</tr>
<tr>
<td>G33</td>
<td>Lathe, motion synchronized to spindle</td>
</tr>
<tr>
<td>G38.2</td>
<td>straight probe</td>
</tr>
<tr>
<td>G40</td>
<td>cancel cutter radius compensation</td>
</tr>
<tr>
<td>G41</td>
<td>start cutter radius compensation left</td>
</tr>
<tr>
<td>G42</td>
<td>start cutter radius compensation right</td>
</tr>
<tr>
<td>G43</td>
<td>tool length offset (plus), tool X offset for lathe</td>
</tr>
<tr>
<td>G49</td>
<td>cancel tool length offset</td>
</tr>
<tr>
<td>G53</td>
<td>motion in machine coordinate system</td>
</tr>
<tr>
<td>G54</td>
<td>use preset work coordinate system 1</td>
</tr>
<tr>
<td>G55</td>
<td>use preset work coordinate system 2</td>
</tr>
<tr>
<td>G56</td>
<td>use preset work coordinate system 3</td>
</tr>
<tr>
<td>G57</td>
<td>use preset work coordinate system 4</td>
</tr>
<tr>
<td>G58</td>
<td>use preset work coordinate system 5</td>
</tr>
<tr>
<td>G59</td>
<td>use preset work coordinate system 6</td>
</tr>
<tr>
<td>G59.1</td>
<td>use preset work coordinate system 7</td>
</tr>
<tr>
<td>G59.2</td>
<td>use preset work coordinate system 8</td>
</tr>
<tr>
<td>G59.3</td>
<td>use preset work coordinate system 9</td>
</tr>
<tr>
<td>G61</td>
<td>set path control mode: exact path</td>
</tr>
<tr>
<td>G61.1</td>
<td>set path control mode: exact stop</td>
</tr>
<tr>
<td>G64</td>
<td>set path control mode: continuous</td>
</tr>
<tr>
<td>G68</td>
<td>XY rotation</td>
</tr>
<tr>
<td>G76</td>
<td>Lathe, threading</td>
</tr>
<tr>
<td>G80</td>
<td>cancel motion mode (including any canned cycle)</td>
</tr>
<tr>
<td>G81</td>
<td>canned cycle: drilling</td>
</tr>
<tr>
<td>G82</td>
<td>canned cycle: drilling with dwell</td>
</tr>
<tr>
<td>G83</td>
<td>canned cycle: peck drilling</td>
</tr>
<tr>
<td>G84</td>
<td>canned cycle: right hand tapping</td>
</tr>
<tr>
<td>G85</td>
<td>canned cycle: boring, no dwell, feed out</td>
</tr>
<tr>
<td>G86</td>
<td>canned cycle: boring, spindle stop, rapid out</td>
</tr>
<tr>
<td>G87</td>
<td>canned cycle: back boring</td>
</tr>
<tr>
<td>G88</td>
<td>canned cycle: boring, spindle stop, manual out</td>
</tr>
<tr>
<td>G89</td>
<td>canned cycle: boring, dwell, feed out</td>
</tr>
<tr>
<td>G90</td>
<td>absolute distance mode</td>
</tr>
<tr>
<td>G91</td>
<td>incremental distance mode</td>
</tr>
<tr>
<td>G92</td>
<td>offset coordinate systems and set parameters</td>
</tr>
<tr>
<td>G92.1</td>
<td>cancel offset coordinate systems and set parameters to zero</td>
</tr>
<tr>
<td>G92.2</td>
<td>cancel offset coordinate systems but do not reset parameters</td>
</tr>
<tr>
<td>G92.3</td>
<td>apply parameters to offset coordinate systems</td>
</tr>
<tr>
<td>G93</td>
<td>inverse time feed rate mode</td>
</tr>
<tr>
<td>G94</td>
<td>units per minute feed rate mode</td>
</tr>
<tr>
<td>G98</td>
<td>initial level return in canned cycles</td>
</tr>
<tr>
<td>G99</td>
<td>R-point level return in canned cycles</td>
</tr>
</tbody>
</table>
3.5.2 Linear Motion at Feed Rate - G1
For linear motion at feed rate (for cutting or not), program G1 X… Y… Z… A…,
where all the axis words are optional, except that at least one must be used. The G1
is optional if the current motion mode is G1. This will produce coordinated linear
motion to the destination point at the current feed rate (or slower if the machine will
not go that fast).

It is an error if:
• All axis words are omitted.

If cutter radius compensation is active, the motion will differ from the above; see
Appendix A. If G53 is programmed on the same line, the motion will also differ; see
Section 3.5.12.

3.5.3 Arc at Feed Rate - G2 and G3
A circular or helical arc is specified using either G2 (clockwise arc) or G3
(counterclockwise arc). The axis of the circle or helix must be parallel to the X, Y, or
Z-axis of the machine coordinate system. The axis (or, equivalently, the plane
perpendicular to the axis) is selected with G17 (Z-axis, XY-plane), G18 (Y-axis, XZ-
plane), or G19 (X-axis, YZ-plane). If the arc is circular, it lies in a plane parallel to
the selected plane.

If a line of RS274/NGC code makes an arc and includes rotational axis motion, the
rotational axes turn at a constant rate so that the rotational motion
starts and
finishes when the XYZ motion starts and finishes. Lines of this sort are hardly ever
programmed.
If cutter radius compensation is active, the motion will differ from what is described
here. See Appendix A.

Two formats are allowed for specifying an arc. We will call these the center format
and the radius format. In both formats the G2 or G3 is optional if it is the current
motion mode.

3.5.3.1 RADIUS FORMAT ARC
In the radius format, the coordinates of the end point of the arc in the selected plane
are specified along with the radius of the arc. Program G2 X… Y… Z… A… R… (or
use G3 instead of G2). R is the radius. The axis words are all optional except that at
least one of the two words for the axes in the selected plane must be used. The R
number is the radius. A positive radius indicates that the arc turns through 180
degrees or less, while a negative radius indicates a turn of 180 degrees to 359.999
degrees. If the arc is helical, the value of the end point of the arc on the coordinate
axis parallel to the axis of the helix is also specified.

It is an error if:
• both of the axis words for the axes of the selected plane are omitted,
• the end point of the arc is the same as the current point.

It is not good practice to program radius format arcs that are nearly full circles or are
semicircles (or nearly semicircles) because a small change in the location of the end
point will produce a much larger change in the location of the center of the circle (and, hence, the middle of the arc). The magnification effect is large enough that rounding error in a number can produce out-of-tolerance cuts. Nearly full circles are outrageously bad, semicircles (and nearly so) are only very bad. Other size arcs (in the range tiny to 165 degrees or 195 to 345 degrees) are OK.

Here is an example of a radius format command to mill an arc: \texttt{G17 G2 x 10 y 15 r 20 z 5}.

That means to make a clockwise (as viewed from the positive Z-axis) circular or helical arc whose axis is parallel to the Z-axis, ending where X=10, Y=15, and Z=5, with a radius of 20. If the starting value of Z is 5, this is an arc of a circle parallel to the XY-plane; otherwise it is a helical arc.

3.5.3.2 Center Format Arc

In the center format, the coordinates of the end point of the arc in the selected plane are specified along with the offsets of the center of the arc from the current location. In this format, it is OK if the end point of the arc is the same as the current point. It is an error if:

- When the arc is projected on the selected plane, the distance from the current point to the center differs from the distance from the end point to the center by more than 0.0002 inch (if inches are being used) or 0.002 millimeter (if millimeters are being used).

When the XY-plane is selected, program \texttt{G2 X... Y... Z... A... I... J...} (or use G3 instead of G2). The axis words are all optional except that at least one of X and Y must be used. I and J are the offsets from the current location (in the X and Y directions, respectively) of the center of the circle. I and J are optional except that at least one of the two must be used. It is an error if:

- X and Y are both omitted,
- I and J are both omitted.

When the XZ-plane is selected, program \texttt{G2 X... Y... Z... A... I... K...} (or use G3 instead of G2). The axis words are all optional except that at least one of X and Z must be used. I and K are the offsets from the current location (in the X and Z directions, respectively) of the center of the circle. I and K are optional except that at least one of the two must be used. It is an error if:

- X and Z are both omitted,
- I and K are both omitted.

When the YZ-plane is selected, program \texttt{G2 X... Y... Z... A... B... C... J... K...} (or use G3 instead of G2). The axis words are all optional except that at least one of Y and Z must be used. J and K are the offsets from the current location (in the Y and Z directions, respectively) of the center of the circle. J and K are optional except that at least one of the two must be used. It is an error if:

- Y and Z are both omitted,
- J and K are both omitted.
Here is an example of a center format command to mill an arc:

```
G17 G2 x10 y16 i 3 j 4 z 9.
```

That means to make a clockwise (as viewed from the positive z-axis) circular or helical arc whose axis is parallel to the Z-axis, ending where X=10, Y=16, and Z=9, with its center offset in the X direction by 3 units from the current X location and offset in the Y direction by 4 units from the current Y location. If the current location has X=7, Y=7 at the outset, the center will be at X=10, Y=11. If the starting value of Z is 9, this is a circular arc; otherwise it is a helical arc. The radius of this arc would be 5.

In the center format, the radius of the arc is not specified, but it may be found easily as the distance from the center of the circle to either the current point or the end point of the arc.

3.5.4 Dwell - G4

For a dwell, program G4 P… . This will keep the axes unmoving for the period of time in seconds specified by the P number. It is an error if:

- the P number is negative.

3.5.5 Set Coordinate System Data - G10

To set the coordinate values for the origin of a coordinate system, program

```
G10 L2 P … X… Y… Z… A….
```

where the P number must evaluate to an integer in the range 1 to 9 (corresponding to G54 to G59.3) and all axis words are optional. The coordinates of the origin of the coordinate system specified by the P number are reset to the coordinate values given (in terms of the absolute coordinate system). Only those coordinates for which an axis word is included on the line will be reset.

It is an error if:

- the P number does not evaluate to an integer in the range 1 to 9.

If origin offsets (made by G92 or G92.3) were in effect before G10 is used, they will continue to be in effect afterwards.

The coordinate system whose origin is set by a G10 command may be active or inactive at the time the G10 is executed.

Example:

```
G10 L2 P1 x 3.5 y 17.2
```

sets the origin of the first coordinate system (the one selected by G54) to a point where X is 3.5 and Y is 17.2 (in absolute coordinates). The Z coordinate of the origin (and the coordinates for any rotational axes) are whatever those coordinates of the origin were before the line was executed.

```
```

Set coordinate system given by P number relative to actual machine position. Working is similar to G92. Jog to any position, then apply e.g. G10 L20 P1 X0 Y0 to set G54 coordinate system zero point at current machine position.
3.5.6 Plane Selection - G17, G18, and G19
Program **G17** to select the XY-plane, **G18** to select the XZ-plane, or **G19** to select the YZ-plane. The effects of having a plane selected are discussed in Section 3.5.3 and Section 3.5.16.

3.5.7 Length Units - G20/G21 and G70/G71
Program **G20** to use inches for length units. Program **G21** to use millimeters. It is usually a good idea to program either G20 or G21 near the beginning of a program before any motion occurs, and not to use either one anywhere else in the program. It is the responsibility of the user to be sure all numbers are appropriate for use with the current length units. **G70/G71** is added for CAM software compatibility.

3.5.8 Return to Home - G28 and G30
Two home positions are defined (by parameters 5161-5166 for G28 and parameters 5181-5186 for G30). The parameter values are in terms of the absolute coordinate system, but are in unspecified length units.
To return to home position by way of the programmed position, program **G28 X... Y... Z... A...** (or use **G30**). All axis words are optional. The path is made by a traverse move from the current position to the programmed position, followed by a traverse move to the home position. If no axis words are programmed, the intermediate point is the current point, so only one move is made.

3.5.9 G33, G33.1 Spindle-Synchronized Motion
For spindle-synchronized motion in one direction, program **G33 X... Y... Z... K...** where K gives the distance moved in XYZ for each revolution of the spindle. For instance, if starting at Z=0, G33 Z-1
K.0625 produces a 1 inch motion in Z over 16 revolutions of the spindle. This command might be part of a program to produce a 16TPI thread.
A move to the specified coordinate, synchronized with the spindle at the given ratio and starting with a spindle index pulse

All the axis words are optional, except that at least one must be used.
It is an error if:
- all axis words are omitted.
- the spindle is not turning when this command is executed.
- the requested linear motion exceeds machine velocity limits due to the spindle speed.
3.5.10 Straight Probe - G38.2

3.5.10.1 The Straight Probe Command
Program G38.2 X... Y... Z... A... to perform a straight probe operation. The rotational axis words are allowed, but it is better to omit them. If rotational axis words are used, the numbers must be the same as the current position numbers so that the rotational axes do not move. The linear axis words are optional, except that at least one of them must be used. The tool in the spindle must be a probe.

It is an error if:
- the current point is less than 0.254 millimeter or 0.01 inch from the programmed point.
- G38.2 is used in inverse time feed rate mode,
- any rotational axis is commanded to move,
- no X, Y, or Z-axis word is used.

In response to this command, the machine moves the controlled point (which should be at the end of the probe tip) in a straight line at the current feed rate toward the programmed point. If the probe trips, the probe is retracted slightly from the trip point at the end of command execution. If the probe does not trip even after overshooting the programmed point slightly, an error is signaled.

After successful probing, parameters 5061 to 5066 will be set to the program coordinates of the location of the controlled point at the time the probe tripped. The variables 5051 to 5056 will contain the machine coordinates. Useful for measuring tools in absolute machine positions. G53 G38.2 will move in machine coordinates.

3.5.10.2 Using the Straight Probe Command
Using the straight probe command, if the probe shank is kept nominally parallel to the Z-axis (i.e., any rotational axes are at zero) and the tool length offset for the probe is used, so that the controlled point is at the end of the tip of the probe:
- without additional knowledge about the probe, the parallelism of a face of a part to the XY-plane may, for example, be found.
- if the probe tip radius is known approximately, the parallelism of a face of a part to the YZ or XZ-plane may, for example, be found.
- if the shank of the probe is known to be well-aligned with the Z-axis and the probe tip radius is known approximately, the center of a circular hole, may, for example, be found.
- if the shank of the probe is known to be well-aligned with the Z-axis and the probe tip radius is known precisely, more uses may be made of the straight probe command, such as finding the diameter of a circular hole.

If the straightness of the probe shank cannot be adjusted to high accuracy, it is desirable to know the effective radii of the probe tip in at least the +X, -X, +Y, and -Y directions. These quantities can be stored in parameters either by being included in the parameter file or by being set in an RS274/NGC program.

Using the probe with rotational axes not set to zero is also feasible. Doing so is more complex than when rotational axes are at zero, and we do not deal with it here.
3.5.10.3 Example Code

As a usable example, the code for finding the center and diameter of a circular hole is shown in Table 3-5. For this code to yield accurate results, the probe shank must be well-aligned with the Z-axis, the cross section of the probe tip at its widest point must be very circular, and the probe tip radius (i.e., the radius of the circular cross section) must be known precisely. If the probe tip radius is known only approximately (but the other conditions hold), the location of the hole center will still be accurate, but the hole diameter will not.

In Table 3-5, an entry of the form <description of number> is meant to be replaced by an actual number that matches the description of number. After this section of code has executed, the X-value of the center will be in parameter 1041, the Y-value of the center in parameter 1022, and the diameter in parameter 1034. In addition, the diameter parallel to the X-axis will be in parameter 1024, the diameter parallel to the Y-axis in parameter 1014, and the difference (an indicator of circularity) in parameter 1035. The probe tip will be in the hole at the XY center of the hole.

The example does not include a tool change to put a probe in the spindle. Add the tool change code at the beginning, if needed.

Table 3-5 Code to Probe Hole

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N010</td>
<td>(probe to find center and diameter of circular hole)</td>
</tr>
<tr>
<td>N020</td>
<td>(This program will not run as given here. You have to)</td>
</tr>
<tr>
<td>N030</td>
<td>(insert numbers in place of <description of number>.)</td>
</tr>
<tr>
<td>N040</td>
<td>(Delete lines N020, N030, and N040 when you do that.)</td>
</tr>
<tr>
<td>N050</td>
<td>G0 Z <Z-value of retracted position> F <feed rate></td>
</tr>
<tr>
<td>N060</td>
<td>#1001=<nominal X-value of hole center></td>
</tr>
<tr>
<td>N070</td>
<td>#1002=<nominal Y-value of hole center></td>
</tr>
<tr>
<td>N080</td>
<td>#1003=<some Z-value inside the hole></td>
</tr>
<tr>
<td>N090</td>
<td>#1004=<probe tip radius></td>
</tr>
<tr>
<td>N100</td>
<td>#1005=-<nominal hole diameter>/2.0 - #1004</td>
</tr>
<tr>
<td>N110</td>
<td>G0 X#1001 Y#1002 (move above nominal hole center)</td>
</tr>
<tr>
<td>N120</td>
<td>G0 Z#1003 (move into hole - to be cautious, substitute G1 for G0 here)</td>
</tr>
<tr>
<td>N130</td>
<td>G38.2 X[#1001 + #1005] (probe +X side of hole)</td>
</tr>
<tr>
<td>N140</td>
<td>#1011=#5061 (save results)</td>
</tr>
<tr>
<td>N150</td>
<td>G0 X#1001 Y#1002 (back to center of hole)</td>
</tr>
<tr>
<td>N160</td>
<td>G38.2 X[#1001 - #1005] (probe -X side of hole)</td>
</tr>
<tr>
<td>N170</td>
<td>#1021=[#1011 + #5061] / 2.0] (find pretty good X-value of hole center)</td>
</tr>
<tr>
<td>N180</td>
<td>G0 X#1021 Y#1002 (back to center of hole)</td>
</tr>
<tr>
<td>N190</td>
<td>G38.2 Y[#1002 + #1005] (probe +Y side of hole)</td>
</tr>
<tr>
<td>N200</td>
<td>#1012=#5062 (save results)</td>
</tr>
<tr>
<td>N210</td>
<td>G0 X#1021 Y#1002 (back to center of hole)</td>
</tr>
<tr>
<td>N220</td>
<td>G38.2 Y[#1002 - #1005] (probe -Y side of hole)</td>
</tr>
<tr>
<td>N230</td>
<td>#1022=[#1012 + #5062] / 2.0] (find very good Y-value of hole center)</td>
</tr>
<tr>
<td>N240</td>
<td>G0 #1014=[#1012 - #5062 + [2 * #1004]] (find hole diameter in Y-direction)</td>
</tr>
<tr>
<td>N250</td>
<td>G0 X#1021 Y#1022 (back to center of hole)</td>
</tr>
<tr>
<td>N260</td>
<td>G38.2 X[#1021 + #1005] (probe +X side of hole)</td>
</tr>
<tr>
<td>N270</td>
<td>#1031=#5061 (save results)</td>
</tr>
<tr>
<td>N280</td>
<td>G0 X#1021 Y#1022 (back to center of hole)</td>
</tr>
<tr>
<td>N290</td>
<td>G38.2 X[#1021 - #1005] (probe -X side of hole)</td>
</tr>
<tr>
<td>N300</td>
<td>#1041=[#1031 + #5061] / 2.0] (find very good X-value of hole center)</td>
</tr>
<tr>
<td>N310</td>
<td>#1024=[#1031 - #5061 + [2 * #1004]] (find hole diameter in X-direction)</td>
</tr>
<tr>
<td>N320</td>
<td>#1034=[#1014 + #1024] / 2.0] (find average hole diameter)</td>
</tr>
<tr>
<td>N330</td>
<td>#1035=[#1024 - #1014] (find difference in hole diameters)</td>
</tr>
<tr>
<td>N340</td>
<td>G0 X#1041 Y#1022 (back to center of hole)</td>
</tr>
<tr>
<td>N350</td>
<td>M2 (that's all, folks)</td>
</tr>
</tbody>
</table>
3.5.11 Cutter Radius Compensation - G40, G41, G41.1, G42, G42.1

To turn cutter radius compensation off, program G40. It is OK to turn compensation off when it is already off. Cutter radius compensation may be performed only if the XY-plane is active.

To turn cutter radius compensation on left (i.e., the cutter stays to the left of the programmed path when the tool radius is positive), program G41 D… . To turn cutter radius compensation on right (i.e., the cutter stays to the right of the programmed path when the tool radius is positive), program G42 D… . The D word is optional; if there is no D word, the radius of the tool currently in the spindle will be used. If used, the D number should normally be the slot number of the tool in the spindle, although this is not required. It is OK for the D number to be zero; a radius value of zero will be used.

It is an error if:
- the D number is not an integer, is negative or is larger than the number of carousel slots,
- the XY-plane is not active or for turning the ZX plane is not active,
- cutter radius compensation is commanded to turn on when it is already on.

The behavior of the machining center when cutter radius compensation is on is described in Appendix A.

With G41.1 D… is the same as G41 D… except now the D number is not a tool number but a tool diameter.
With G42.1 D… is the same as G42 D… except now the D number is not a tool number but a tool diameter.
3.5.11.1 Example Code for Milling

This example mills out a rectangular object from the outside and inside. On the outside we use G42, tool radius compensation right and for the inside G41, tool radius compensation left is used. For both contours a tool-radius-compensation entry move is programmed consisting of a line which must be longer than the tool-radius used and a circle, of which also the radius is bigger than the tool.

By the way, all arc radii should be bigger than the tool radius. If you have inside corners, there should be always an arc, so that the tool fits.

```
g0 z3
f500
/g42.1 D6
```

```
g1 x-5       (cutter comp entry move 1)
g2 x0 y10 r5 (cutter comp entry move 2)
g1 z-3       (plunge down)
g3 x10 y0 r10
2x70
3x80 y10 r10
1 y90
3 x70 y100 r10
1 x10
3 x0 y90 r10
1 x0 y10
/g40
```

```
g0 z3
```

```
g0 x30 y30
```

```
/g41.1 d6
```

```
g1 x20
3 x10 y20 r10
1 z-3
3 x20 y10 r10
1 x60
3 x70 y20 r10
1 y80
3 x60 y90 r10
1 x20
3 x10 y80 r10
1 y20
/g40
```

```
g0 z3
```

```
m30
```

The G42, G41 and G40 codes are programmed with a / (block delete sign) in front. This makes it easy to debug tool comp programs. The program is loaded with block delete on, this is the blue curve. Then the program is run with block delete off resulting in the yellow curve.

It is clear to see what the entry move does.
3.5.11.2 Example Code for Turning

The movement starts at the right upper corner. The blue line is the programmed contour. The yellow is the contour with tool-radius compensation G41. The first G1 line is the tool comp entry move.

You can get this figure by putting a / character in front of the G41/G40 codes. The load the program with block delete on and execute it with block delete off. With block delete on the tool comp is skipped.

(Diameter programming)
(Use R word for Arcs)
g0 x-20 z20
/g41.1 d5
g1 x-20 z10
g3 x0 z0 r10
g1 x20
g2 x40 z-10 r10
g1 z-20
g3 x60 z-30 r10
/g40
m30

(Radius programming)
(Use R word for Arcs)
g0 x-10 z20
/g41.1 d5
g1 x-10 z10
g3 x0 z0 r10
g1 x10
g2 x20 z-10 r10
g1 z-20
g3 x30 z-30 r10
/g40
m30

(Diameter programming)
(Use I,K programming for arc's)
g0 x-20 z20
/g41.1 d5
g1 x-20 z10
g3 x0 z0 i10 k0
g1 x20
g2 x40 z-10 i0 k-10
g1 z-20
g3 x60 z-30 i10 k0
/g40
m30

(Radius programming)
(Use I,K programming for arc's)
g0 x-10 z20
/g41.1 d5
g1 x-10 z10
g3 x0 z0 i10 k0
g1 x10
g2 x20 z-10 i0 k-10
g1 z-20
g3 x30 z-30 i10 k0
/g40
m30

3.5.12 Tool Length Offsets - G43, G43.1, and G49

To use a tool length offset from the tool table, program G43 H..., where the H number is the desired index in the tool table. It is expected that all entries in this table will be positive. The H number should be, but does not have to be, the same as the slot number of the tool currently in the spindle. It is OK for the H number to be zero; an offset value of zero will be used.

If the H number is omitted, the actual tool in the spindle is used.

It is an error if:
- the H number is not an integer, is negative, or is larger than the number of carousel slots.

To use dynamic tool compensation (not from the tool-table), use G43.1 I.. K.. where I.. gives the tool X offset (turning) and K.. gives the tool Z offset (for turning and milling)

To use no tool length offset, program G49. It is OK to program using the same offset already in use. It is also OK to program using no tool length offset if none is currently being used.

#5401 - #5416 is the tool-Z (length) offset.
#5501 - #5516 is the tool-diameter (length).
#5601 - #5616 is the tool-X (width for turning) offset.
The variables can be modified runtime (in the G-Code file) if needed to compensate for tool-wear.

3.5.13 Move in Absolute Coordinates - G53

For linear motion to a point expressed in absolute coordinates, program G1 G53 X... Y... Z... A... (or use G0 instead of G1), where all the axis words are optional, except that at least one must be used. The G0 or G1 is optional if it is the current motion mode. G53 is not modal and must be programmed on each line on which it is intended to be active. This will produce coordinated linear motion to the programmed point. If G1 is active, the speed of motion is the current feed rate (or slower if the machine will not go that fast). If G0 is active, the speed of motion is the current traverse rate (or slower if the machine will not go that fast).

It is an error if:
- G53 is used without G0 or G1 being active,
- G53 is used while cutter radius compensation is on.

3.5.14 Select Coordinate System - G54 to G59.3

To select coordinate system 1, program G54, and similarly for other coordinate systems. The system-number-G-code pairs are: (1-G54), (2-G55), (3-G56), (4-G57), (5-G58), (6-G59), (7-G59.1), (8-G59.2), and (9-G59.3).

It is an error if:
- one of these G-codes is used while cutter radius compensation is on.

3.5.15 Set Path Control Mode - G61, and G64, or G64 Px

Some work pieces require absolute accuracy and some other require nonstop milling for best surface quality. One must understand that it is physically impossible to move around sharp corners without a standstill at the corner. This isn’t possible with a car and also not with a CNC machine, since that would require infinite acceleration. The user can make a choice here, absolute accuracy with standstill at
every corner (G61) or no standstill and corner round off with specified accuracy (G64Px.x).

G61 puts the machining center into exact path mode. In G61, the motion velocity between motion segments goes to zero, the end position in corners is exactly reached, use this if you require maximum accuracy. When a work piece consists of many small lines this gives a quite vibrating machine because of the continuous acceleration-deceleration-stop behavior.

G64 Px.x for continuous mode. In G64, subsequent moves are blended, when previous move starts to decelerate and reaches a velocity such that the specified accuracy isn’t violated, the next move starts to accelerate, the two motions are added. The result is smooth motion with highest possible speed to achieve required accuracy. The corners however are rounded. specifies the distance reached to the corner while blending. The next move is blended with current such that the tool path remains no more than P from the corner. The figure below is a rectangle of 10x10 milled with F 2000. This is done with P values from 0.1 to 1, you can see the impact. This gives the best compromise between accuracy and smooth motion.

To make a move from stand still we need to accelerate, then have a certain cruising speed and after decelerate. Short moves typically never reach the requested velocity the accelerate and then at half the distance the decelerate.

This table shows the distance traveled so that the given speed is reached. When the line segments generated by the CAD/CAM program are shorter, the actual speed on the machine will be lower than requested value. Example, you want a milling speed of 900 mm/minute, then the segments generated by the CAD/CAM program must be smaller than 1.88 mm. If the lines are only 0.21 mm, the feed will go down to 300

<table>
<thead>
<tr>
<th>Velocity</th>
<th>Feed</th>
<th>Accel</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>2880</td>
<td>120</td>
<td>19.20</td>
</tr>
<tr>
<td>30</td>
<td>1800</td>
<td>120</td>
<td>7.50</td>
</tr>
<tr>
<td>25</td>
<td>1500</td>
<td>120</td>
<td>5.21</td>
</tr>
<tr>
<td>20</td>
<td>1200</td>
<td>120</td>
<td>3.33</td>
</tr>
</tbody>
</table>
If your machine has higher accelerations which requires bigger motors, also higher milling velocities are possible. The values given here are for a moderate hobby machine. This illustrates that when the G-Code file exists of small segments, e.g. 0.08 mm, that with an acceleration of 120 a feed can be reached of 180 mm/minute at most.

3.5.16 Look Ahead feed
To explain this, I will compare a running CNC machine with driving a race car.

The road maximum velocity signs have to be obeyed and you have to drive your car exactly over the white line in the middle of the road. You will try to reach the maximum allowed velocity where possible. When you see a curve coming up ahead, you will brake so that you will not drift off the road. You will try to look ahead as far as you can see and you take care that you can stop in time if the road suddenly stops.

When you would maintain your speed in sharp curves, you will drift off the road resulting possibly into a car accident. When the road has many short curves, then you will not be able to reach the desired speed. The more PS you have in the car, the higher speed you will reach because you can accelerate faster.

I think this is a good comparison with a CNC machine, the same issues apply. A machine cannot suddenly change velocity, to reach a velocity the motors must accelerate first for a certain time to reach the velocity.

LAF behaves like the ideal racecar driver, it will reach the highest possible velocity without violating the maximum motor accelerations.
There is one additional problem while running CNC programs, some programs consists of short line pieces. When the line pieces connect tangentially (are in line), then LAF will accelerate through over the lines, reaching the maximum allowed speed.

The angle to which LAF considers the segments in line is a setup parameter. The theoretical ideal value would be very small, so that no acceleration value occurs. More practical values are in the range of 1 to 4 degrees, the experience learns that most machines can handle acceleration spikes up to a certain limit.

The value can be set up to 180 degrees in this case you must know what you are doing, it can be useful during e.g. foam cutting wing profiles. Be aware however that if the curve contains real sharp angles that step pulse loss may be the result when using large minimum LAF angles.

In practice we have seen that milling times of complex 3D work pieces can be done in 50% of the time compared to competitors who do not have LAF.
3.5.17 Coordinate system rotation G68

G68 R.. X.. Y..

R Rotation angle in degrees, positive is counter-clockwise, negative is clockwise.
X Y Rotation point in current coordinate system.

3.5.18 Threading (Lathe) – G76

G76 P- Z- I- J- R- Q- H- E- L-

P Pitch
Z driveline endpoint
I Outside thread diameter, always positive.
J First cut is J beyond I, always positive.
R Depth regression, use 1.0 for constant cutting depths or leave parameter away.
K Full thread depth beyond thread peak, always positive.
Q Compound slide angle, typical 30.
H Additional spring passes at full depth, use 0 for none.
E Taper distance along drive line.
L Taper place, none, enter, exit, both.

;Create a thread from z=20 to z=10, outside diameter=15, inside diameter=14, 10 passes.
G0 X20 Z20
G76 P1.0 Z10 I15 J0.1 K1.0

It is an error if:

• The active plane is not the ZX plane
• Other axis words, such as X- or Y-, are specified
• The R- degression value is less than 1.0.
• All the required words are not specified
• P-, J-, K- or H- is negative
• E- is greater than half the drive line length

The “drive line” is a safe line outside the thread material. The “drive line” goes from the initial location to the Z- value specified with G76. The Z extent of the thread is the same as the drive line.

The “thread pitch”, or distance per revolution, is given by the P- value.

The “thread peak” is given by the I- value, which is an offset from the drive line. Negative I values indicate external threads, and positive I values indicate internal threads. Generally the material has been turned to this size before the G76 cycle.

The “initial cut depth” is given by the J- value. The first threading cut will be J beyond the “thread peak” position. J- is positive, even when I- is negative.

The “full thread depth” is given by the K- value. The final threading cut will be K beyond the “thread peak” position. K- is positive, even when I- is negative.

The “depth degression” is given by the R- value. R1.0 selects constant depth on successive threading passes. R2.0 selects constant area. Values between 1.0 and 2.0 select decreasing depth.
and increasing area. Values above 2.0 select decreasing area. Beware that unnecessarily high
degression values will cause a large number of passes to be used.

The “compound slide angle” \(Q \) is the angle (in degrees) describing to what extent successive passes
should be offset along the drive line. This is used to cause one side of the tool to remove more
material than the other. A positive \(Q \) value causes the leading edge of the tool to cut more heavily.
Typical values are 29, 29.5 or 30.

The number of “spring passes” is given by the \(H \) value. Spring passes are additional passes at full
thread depth. If no additional passes are desired, program \(H0 \).

Tapered entry and exit moves can be programmed using \(E \) and \(L \). \(E \) gives a distance along the
drive line used for the taper. \(E0.2 \) will give a taper for the first/last 0.2 length units along the thread. \(L \)
is used to specify which ends of the thread get the taper. Program \(L0 \) for no taper (the default), \(L1 \) for
entry taper, \(L2 \) for exit taper, or \(L3 \) for both entry and exit tapers.

The tool will pause briefly for synchronization before each threading pass, so a relief groove will be
required at the entry unless the beginning of the thread is past the end of the material or an entry
taper is used.

Unless using an exit taper, the exit move (traverse to original X) is not synchronized to the spindle
speed. With a slow spindle, the exit move might take only a small fraction of a revolution. If the
spindle speed is increased after several passes are complete, subsequent exit moves will require a
larger portion of a revolution, resulting in a very heavy cut during the exit move. This can be avoided
by providing a relief groove at the exit, or by not changing the spindle speed while threading.

The sample program g76.ngc shows the use of the G76 canned cycle, and can be previewed and
executed on any machine using the sim/lathe.ini configuration.

![Figure: G76 canned cycle](image)
This is how it works:
1) Before the start, the spindle rate is measured.
2) The feed for the z-axis is calculated: \(F = \text{pitch} \times \text{spindleRate} \)
3) The CPU is programmed such that a movement is started on the spindle pulse.
4) The movement is calculated and sent to the CPU.
5) The movement is started when the spindle pulse passes.
6) Before the treading starts, the spindle-rate is measured, averaged and the feed is calculated from this.

Not that the inside and outside thread diameter are determined by the start position, the position before G76 and the I, K parameters.

3.5.19 Cancel Modal Motion - G80

Program G80 to ensure no axis motion will occur.

It is an error if:
- Axis words are programmed when G80 is active, unless a modal group 0 G code is programmed which uses axis words.

3.5.20 Canned Cycles - G81 to G89

The canned cycles G81 through G89 have been implemented as described in this section. Two examples are given with the description of G81 below.

All canned cycles are performed with respect to the currently selected plane. Any of the three planes (XY, YZ, and ZX) may be selected. Throughout this section, most of the descriptions assume the XY-plane has been selected. The behavior is always analogous if the YZ or XZ-plane is selected.

Rotational axis words are allowed in canned cycles, but it is better to omit them. If rotational axis words are used, the numbers must be the same as the current position numbers so that the rotational axes do not move.

All canned cycles use X, Y, R, and Z numbers in the NC code. These numbers are used to determine the X, Y, R, and Z positions. The R (usually meaning retract) position is along the axis perpendicular to the currently selected plane (Z-axis for XY-plane, X-axis for YZ-plane, Y-axis for XZ-plane). Some canned cycles use additional arguments.

For canned cycles, we will call a number "sticky" if, when the same cycle is used on several lines of code in a row, the number must be used the first time, but is optional on the rest of the lines. Sticky numbers keep their value on the rest of the lines if they are not explicitly programmed to be different. The R number is always sticky.

In incremental distance mode: when the XY-plane is selected, X, Y, and R numbers are treated as increments to the current position and Z as an increment from the Z-axis position before the move involving Z takes place; when the YZ or XZ-plane is selected, treatment of the axis words is analogous. In absolute distance mode, the X, Y, R, and Z numbers are absolute positions in the current coordinate system.

The L number is optional and represents the number of repeats. L=0 is not allowed. If the repeat feature is used, it is normally used in incremental distance mode, so that the same sequence of motions is repeated in several equally spaced places along a straight line. In absolute distance mode, L > 1 means "do the same cycle in the same place several times," Omitting the L word is equivalent to specifying L=1. The L number is not sticky.
When L>1 in incremental mode with the XY-plane selected, the X and Y positions are determined by adding the given X and Y numbers either to the current X and Y positions (on the first go-around) or to the X and Y positions at the end of the previous go-around (on the repetitions). The R and Z positions do not change during the repeats.

The height of the retract move at the end of each repeat (called "clear Z" in the descriptions below) is determined by the setting of the retract mode: either to the original Z position (if that is above the R position and the retract mode is G98, OLD_Z), or otherwise to the R position. See Section 3.5.20

It is an error if:
- X, Y, and Z words are all missing during a canned cycle,
- a P number is required and a negative P number is used,
- an L number is used that does not evaluate to a positive integer,
- rotational axis motion is used during a canned cycle,
- inverse time feed rate is active during a canned cycle,
- cutter radius compensation is active during a canned cycle.

When the XY plane is active, the Z number is sticky, and it is an error if:
- the Z number is missing and the same canned cycle was not already active,
- the R number is less than the Z number.

When the XZ plane is active, the Y number is sticky, and it is an error if:
- the Y number is missing and the same canned cycle was not already active,
- the R number is less than the Y number.

When the YZ plane is active, the X number is sticky, and it is an error if:
- the X number is missing and the same canned cycle was not already active,
- the R number is less than the X number.

3.5.20.1 Preliminary and In-Between Motion

At the very beginning of the execution of any of the canned cycles, with the XY-plane selected, if the current Z position is below the R position, the Z-axis is traversed to the R position. This happens only once, regardless of the value of L.

In addition, at the beginning of the first cycle and each repeat, the following one or two moves are made:
1. a straight traverse parallel to the XY-plane to the given XY-position,
2. a straight traverse of the Z-axis only to the R position, if it is not already at the R position.

If the XZ or YZ plane is active, the preliminary and in-between motions are analogous.
3.5.20.2 G81 CYCLE
The G81 cycle is intended for drilling. Program G81 X... Y... Z... A... R... L...
1. Preliminary motion, as described above.
2. Move the Z-axis only at the current feed rate to the Z position.
3. Retract the Z-axis at traverse rate to clear Z.

Example: Suppose the current position is (1, 2, and 3) and the XY-plane has been selected, and the following line of NC code is interpreted.

G90 G81 G98 X4 Y5 Z1.5 R2.8
This calls for absolute distance mode (G90) and OLD_Z retract mode (G98) and calls for the G81 drilling cycle to be performed once. The X number and X position are 4. The Y number and Y position are 5. The Z number and Z position are 1.5. The R number and clear Z are 2.8. Old Z is 3. The following moves take place.
1. a traverse parallel to the XY-plane to (4,5,3)
2. a traverse parallel to the Z-axis to (4,5,2.8)
3. a feed parallel to the Z-axis to (4,5,1.5)
4. a traverse parallel to the Z-axis to (4,5,3)

Example: Suppose the current position is (1, 2, and 3) and the XY-plane has been selected, and the following line of NC code is interpreted.

G91 G81 G98 X4 Y5 Z \-0.6 R1.8 L3
This calls for incremental distance mode (G91) and OLD_Z retract mode (G98) and calls for the G81 drilling cycle to be repeated three times. The X number is 4, the Y number is 5, the Z number is -0.6 and the R number is 1.8. The initial X position is 5 (=1+4), the initial Y position is 7 (=2+5), the clear Z position is 4.8 (=1.8+3), and the Z position is 4.2 (=4.8-0.6). Old Z is 3.
The first move is a traverse along the Z-axis to (1,2,4.8), since old Z < clear Z.
The first repeat consists of 3 moves.
1. a traverse parallel to the XY-plane to (5,7,4.8)
2. a feed parallel to the Z-axis to (5,7, 4.2)
3. a traverse parallel to the Z-axis to (5,7,4.8)

The second repeat consists of 3 moves. The X position is reset to 9 (=5+4) and the Y position to 12 (=7+5).
1. a traverse parallel to the XY-plane to (9,12,4.8)
2. a feed parallel to the Z-axis to (9,12, 4.2)
3. a traverse parallel to the Z-axis to (9,12,4.8)

The third repeat consists of 3 moves. The X position is reset to 13 (=9+4) and the Y position to 17 (=12+5).
1. a traverse parallel to the XY-plane to (13,17,4.8)
2. a feed parallel to the Z-axis to (13,17, 4.2)
3. a traverse parallel to the Z-axis to (13,17,4.8)

3.5.20.3 G82 CYCLE
The G82 cycle is intended for drilling. Program G82 X... Y... Z... A... R... L... P...
1. Preliminary motion, as described above.
2. Move the Z-axis only at the current feed rate to the Z position.
3. Dwell for the P number of seconds.
4. Retract the Z-axis at traverse rate to clear Z.

3.5.20.4 G83 CYCLE
The G83 cycle (often called peck drilling) is intended for deep drilling or milling with chip breaking.
The retracts in this cycle clear the hole of chips and cut off any long stringers (which are common when drilling in aluminum). This cycle takes a Q number which represents a "delta" increment along the Z-axis. Program G83 X... Y... Z... A... R... L... Q...
1. Preliminary motion, as described above.
2. Move the Z-axis only at the current feed rate downward by delta or to the Z position, whichever is less deep.
3. Rapid back out to the clear_z.
4. Rapid back down to the current hole bottom, backed off a bit.
5. Repeat steps 1, 2, and 3 until the Z position is reached at step 1.
6. Retract the Z-axis at traverse rate to clear Z.

It is an error if:
- the Q number is negative or zero.

3.5.20.5 G85 CYCLE

The G85 cycle is intended for boring or reaming, but could be used for drilling or milling. Program G85 X... Y... Z... A... B... C... R... L...

Preliminary motion, as described above.
Move the Z-axis only at the current feed rate to the Z position.
Retract the Z-axis at the current feed rate to clear Z.

3.5.20.6 G86 CYCLE

The G86 cycle is intended for boring. This cycle uses a P number for the number of seconds to dwell.
Program G86 X... Y... Z... A... B... C... R... L... P...

Preliminary motion, as described above.
Move the Z-axis only at the current feed rate to the Z position.
Dwell for the P number of seconds.
Stop the spindle turning.
Retract the Z-axis at traverse rate to clear Z.
Restart the spindle in the direction it was going.

The spindle must be turning before this cycle is used. It is an error if:
the spindle is not turning before this cycle is executed.

3.5.20.7 G87 CYCLE

The G87 cycle is intended for back boring.
Program G87 X... Y... Z... A... R... L... I... J... K...

The situation, as shown in Figure 3-1, is that you have a through hole and you want to counter bore the bottom of hole. To do this you put an L-shaped tool in the spindle with a cutting surface on the UPPER side of its base. You stick it carefully through the hole when it is not spinning and is oriented so it fits through the hole, then you move it so the stem of the L is on the axis of the hole, start the spindle, and feed the tool upward to make the counter bore. Then you stop the tool, get it out of the hole, and restart it.

This cycle uses I and J numbers to indicate the position for inserting and removing the tool. I and J will always be increments from the X position and the Y position, regardless of the distance mode setting. This cycle also uses a K number to specify the position along the Z-axis of the controlled point top of the counter bore. The K number is a Z-value in the current coordinate system in absolute distance mode, and an increment (from the Z position) in incremental distance mode.

1. Preliminary motion, as described above.
2. Move at traverse rate parallel to the XY-plane to the point indicated by I and J.
3. Stop the spindle in a specific orientation.
4. Move the Z-axis only at traverse rate downward to the Z position.
5. Move at traverse rate parallel to the XY-plane to the X,Y location.
6. Start the spindle in the direction it was going before.
7. Move the Z-axis only at the given feed rate upward to the position indicated by K.
8. Move the Z-axis only at the given feed rate back down to the Z position.
9. Stop the spindle in the same orientation as before.
10. Move at traverse rate parallel to the XY-plane to the point indicated by I and J.
11. Move the Z-axis only at traverse rate to the clear Z.
12. Move at traverse rate parallel to the XY-plane to the specified X,Y location.
13. Restart the spindle in the direction it was going before.

When programming this cycle, the I and J numbers must be chosen so that when the tool is stopped in an oriented position, it will fit through the hole. Because different cutters are made differently, it may take some analysis and/or experimentation to determine appropriate values for I and J.

Figure 3-1 G87 Cycle

![Diagram of G87 Cycle]

3.5.20.8 G88 Cycle
The G88 cycle is intended for boring. This cycle uses a P word, where P specifies the number of seconds to dwell. Program G88 X... Y... Z... A... R... L... P...

Preliminary motion, as described above.
1. Move the Z-axis only at the current feed rate to the Z position.
2. Dwell for the P number of seconds.
3. Stop the spindle turning.
4. Stop the program so the operator can retract the spindle manually.
5. Restart the spindle in the direction it was going.

3.5.20.9 G89 Cycle
The G89 cycle is intended for boring. This cycle uses a P number, where P specifies the number of seconds to dwell. Program G89 X... Y... Z... A... R... L... P...

1. Preliminary motion, as described above.
2. Move the Z-axis only at the current feed rate to the Z position.
3. Dwell for the P number of seconds.
4. Retract the Z-axis at the current feed rate to clear Z.

3.5.21 Set Distance Mode - G90 and G91
To make the current point have the coordinates you want (without motion), program G92 X...

Interpretation of RS274/NGC code can be in one of two distance modes: absolute or incremental.

To go into absolute distance mode, program G90. In absolute distance mode, axis numbers (X, Y, Z, A, B, C) usually represent positions in terms of the currently active coordinate system. Any exceptions to that rule are described explicitly in this Section 3.5.

To go into incremental distance mode, program G91. In incremental distance mode, axis numbers (X, Y, Z, A, B, C) usually represent increments from the current values of the numbers.

I and J numbers always represent increments, regardless of the distance mode setting. K numbers represent increments in all but one usage (see Section 3.5.16.8), where the meaning changes with distance mode.
3.5.22 Coordinate System Offsets - G92, G92.1, G92.2, G92.3

To make the current point have the coordinates you want (without motion), program
G92 X... Y... Z... A..., where the axis words contain the axis numbers you want. All axis words are
optional, except that at least one must be used. If an axis word is not used for a given axis, the
coordinate on that axis of the current point is not changed.

It is an error if:
- all axis words are omitted.

When G92 is executed, the origin of the currently active coordinate system moves. To do this, origin
offsets are calculated so that the coordinates of the current point with respect to the moved origin are
as specified on the line containing the G92. In addition, parameters 5211 to 5216 are set to the X, Y,
Z, A, B, and C-axis offsets. The offset for an axis is the amount the origin must be moved so that the
coordinate of the controlled point on the axis has the specified value.

Here is an example. Suppose the current point is at X=4 in the currently specified coordinate system
and the current X-axis offset is zero, then G92 x7 sets the X-axis offset to -3, sets parameter 5211 to
-3, and causes the X-coordinate of the current point to be 7.

The axis offsets are always used when motion is specified in absolute distance mode using any of
the nine coordinate systems (those designated by G54 - G59.3). Thus all nine coordinate systems
are affected by G92.

Being in incremental distance mode has no effect on the action of G92.

Non-zero offsets may already be in effect when the G92 is called. If this is the case, the new value of
each offset is A+B, where A is what the offset would be if the old offset were zero, and B is the old
offset. For example, after the previous example, the X-value of the current point is 7. If G92 x9 is then
programmed, the new X-axis offset is -5, which is calculated by [(7-9) + -3].

To reset axis offsets to zero, program G92.1 or G92.2. G92.1 sets parameters 5211 to 5216 to zero,
whereas G92.2 leaves their current values alone.
To set the axis offset values to the values given in parameters 5211 to 5216, program G92.3.

You can set axis offsets in one program and use the same offsets in another program. Program G92
in the first program. This will set parameters 5211 to 5216. Do not use G92.1 in the remainder of
the first program. The parameter values will be saved when the first program exits and restored when the
second one starts up. Use G92.3 near the beginning of the second program. That will restore the
offsets saved in the first program. If other programs are to run between the program that sets the
offsets and the one that restores them, make a copy of the parameter file written by the first program
and use it as the parameter file for the second program.

3.5.23 Set Feed Rate Mode - G93 and G94

Two feed rate modes are recognized: units per minute and inverse time. Program G94 to start the
units per minute mode. Program G93 to start the inverse time mode.

In units per minute feed rate mode, an F word (no, not that F word; we mean
feed-rate) is interpreted
to mean the controlled point should move at a certain number of inches per minute, millimeters per
minute, or degrees per minute, depending upon what length units are being used and which axis or
axes are moving.

In inverse time feed rate mode, an F word means the move should be completed in [one divided by
the F number] minutes. For example, if the F number is 2.0, the move should be completed in half a
minute.

When the inverse time feed rate mode is active, an F word must appear on every line which has a
G1, G2, or G3 motion, and an F word on a line that does not have G1, G2,
or G3 is ignored. Being in inverse time feed rate mode does not affect G0 (rapid traverse) motions.
It is an error if:
- inverse time feed rate mode is active and a line with G1, G2, or G3 (explicitly or implicitly) does not have an F word.

3.5.24 Set Canned Cycle Return Level - G98 and G99

When the spindle retracts during canned cycles, there is a choice of how far it retracts:
1. retract perpendicular to the selected plane to the position indicated by the R word, or
2. retract perpendicular to the selected plane to the position that axis was in just before the canned cycle started (unless that position is lower than the position indicated by the R word, in which case use the R word position).

To use option (1), program G99. To use option (2), program G98. Remember that the R word has different meanings in absolute distance mode and incremental distance mode.

3.6 INPUT M CODES

M codes of the RS274/NGC language are shown in Table 3-6

<table>
<thead>
<tr>
<th>M Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>program stop</td>
</tr>
<tr>
<td>M1</td>
<td>optional program stop</td>
</tr>
<tr>
<td>M2</td>
<td>program end</td>
</tr>
<tr>
<td>M3</td>
<td>turn spindle clockwise</td>
</tr>
<tr>
<td>M4</td>
<td>turn spindle counterclockwise</td>
</tr>
<tr>
<td>M5</td>
<td>stop spindle turning</td>
</tr>
<tr>
<td>M6</td>
<td>tool change</td>
</tr>
<tr>
<td>M7</td>
<td>mist coolant on</td>
</tr>
<tr>
<td>M8</td>
<td>flood coolant on</td>
</tr>
<tr>
<td>M9</td>
<td>mist and flood coolant off</td>
</tr>
<tr>
<td>M30</td>
<td>program end, spindle and coolants off and rewind.</td>
</tr>
<tr>
<td>M48</td>
<td>enable speed and feed overrides</td>
</tr>
<tr>
<td>M49</td>
<td>disable speed and feed overrides</td>
</tr>
<tr>
<td>M60</td>
<td>program stop, use this with nesting in stead of M60, so that the spindle/coolants remain on during transition from one to the next run.</td>
</tr>
<tr>
<td>M64</td>
<td>set general purpose output for Advantronix USB IO card (support is depricated)</td>
</tr>
<tr>
<td>M65</td>
<td>clear general purpose output for Advantronix USB IO card (support is depricated)</td>
</tr>
<tr>
<td>M66</td>
<td>read general purpose input for Advantronix USB IO card (support is depricated)</td>
</tr>
<tr>
<td>M54</td>
<td>set general purpose output for CPU5B</td>
</tr>
<tr>
<td>M55</td>
<td>clear general purpose output for CPU5B</td>
</tr>
<tr>
<td>M56</td>
<td>read general purpose input for CPU5B</td>
</tr>
</tbody>
</table>

3.6.1 Program Stopping and Ending - M0, M1, M2, M30, M60

To stop a running program temporarily (regardless of the setting of the optional stop switch), program M0 or M1. If a program is stopped by an M0, M1, or M60, pressing the cycle start button will restart the program at the following line, so the program will continue.

To end a program, program M2.

program M30 for next effects:
- Selected plane is set to CANON_PLANE_XY (like G17).
- Distance mode is set to MODE_ABSOLUTE (like G90).
- Feed rate mode is set to UNITS_PER_MINUTE (like G94).
• Feed and speed overrides are set to ON (like M48).
• Cutter compensation is turned off (like G40).
• The spindle is stopped (like M5).
• The current motion mode is set to G_1 (like G1).
• Coolant is turned off (like M9).
• Note that the coordinate system are no longer reset, I modified this behavior because I have broken a lot of bits due to this so I modified it.

No more lines of code in an RS274/NGC file will be executed after the M2 or M30 command is executed. Pressing cycle start will start the program back at the beginning of the file.

3.6.2 Spindle Control - M3, M4, M5
To start the spindle turning clockwise at the currently programmed speed, program M3.
To start the spindle turning counterclockwise at the currently programmed speed, program M4.
To stop the spindle from turning, program M5.
It is OK to use M3 or M4 if the spindle speed is set to zero. If this is done (or if the speed override switch is enabled and set to zero), the spindle will not start turning. If, later, the spindle speed is set above zero (or the override switch is turned up), the spindle will start turning. It is OK to use M3 or M4 when the spindle is already turning or to use M5 when the spindle is already stopped.

3.6.3 Tool Change - M6
To change a tool in the spindle from the tool currently in the spindle to the tool most recently selected (using a T word - see Section 3.7.3), program M6. When the tool change is complete:
• The spindle will be stopped.
• The tool that was selected (by a T word on the same line or on any line after the previous tool change) will be in the spindle. The T number is an integer giving the changer slot of the tool (not its id).
• If the selected tool was not in the spindle before the tool change, the tool that was in the spindle (if there was one) will be in its changer slot.
• The coordinate axes will be stopped in the same absolute position they were in before the tool change (but the spindle may be re-oriented).
• No other changes will be made. For example, coolant will continue to flow during the tool change unless it has been turned off by an M9.

The tool change may include axis motion while it is in progress. It is OK (but not useful) to program a change to the tool already in the spindle. It is OK if there is no tool in the selected slot; in that case, the spindle will be empty after the tool change. If slot zero was last selected, there will definitely be no tool in the spindle after a tool change.

The tool change command will call the change_tool subroutine inside macro.cnc.
You can adapt the behavior for your own needs in this function e.g:
• Perform automatic tool-length measurement
• Perform tool change with an automatic tool changer.

For a (non functional) example of how to implement automatic tool change for a 16-tool changer, see the contents of the default_macro.cnc file at the end of this document. It checks whether current tool is already in the spindle. It check that the tool number is in range of 1-4. Then it first drops current tool and picks the new tool:

3.6.4 Coolant Control - M7, M8, M9
To turn mist coolant on, program M7. To turn flood coolant on, program M8. To turn all coolant off, program M9. It is always OK to use any of these commands, regardless of what coolant is on or off.
3.6.5 Override Control - M48 and M49
To enable the speed and feed override switches, program M48. To disable both switches, program M49. See Section 2.2.1 for more details. It is OK to enable or disable the switches when they are already enabled or disabled.

3.6.6 IO M Functions

3.6.7 Standard CNC IO - M3..M9, M80..M87
To control the outputs, these functions have been added besides the standard M-Functions.

Standard, according to [NIST]
M3 PWM according S value, TOOLDIR = on
M4 PWM according S value, TOOLDIR = off
M5 PWM off, TOOLDIR off.
M7 Mist on
M8 Flood on
M9 Mist/Flood off

Additional, to support the features of the USBCNC CPU's
M80 drive enable on
M81 drive enable off
M82/M61 Aux1 on
M83/M62 Aux1 off
M84 TOOLDIR on
M85 TOOLDIR off
M86 PWM according S value (s/s-max from setup * 100%)
M87 PWM off

3.6.8 General purpose IO of CPU5B - M54, M55 and M56

M54 Px
Set output x.

M54 Ex Qy
Set PWM output x to % value y (0 <= y <= 100)

M55 Px
Clear output x.

M56 Px
Read input x.

M56 Px Ly Qx.xx
Read digital input and specify wait mode
Px: x is input number
L0: do not wait
L1, L3: Wait mode High
L2, L4: Wait mode Low
Qx: x is timeout

M56 Ex Ly Qx.xx
==========
Read analogue input and specify wait mode
Ex: x is input number
L0: do not wait
L1, L3: Wait mode High
L2, L4: Wait mode Low
Qx: x is timeout

For all M56 variants, the input value is stored into #5399

For the general purpose I/O of CPU5, use M54, M55, M56 in stead of M64, M65, M66.

3.7 Other Input Codes

3.7.1 Set Feed Rate - F

To set the feed rate, program F... The application of the feed rate is as described in Section 2.1.2.5, unless inverse time feed rate mode is in effect, in which case the feed rate is as described in Section 3.5.19.

3.7.2 Set Spindle Speed - S

To set the speed in revolutions per minute (rpm) of the spindle, program S... The spindle will turn at that speed when it has been programmed to start turning. It is OK to program an S word whether the spindle is turning or not. If the speed override switch is enabled and not set at 100%, the speed will be different from what is programmed. It is OK to program S0; the spindle will not turn if that is done.

The CPU's that support PWM output will have its PWM value set conform the requested spindle speed if the spindle is turned on.

It is an error if:
- the S number is negative.

As described in Section 3.5.16.5, if a G84 (tapping) canned cycle is active and the feed and speed override switches are enabled, the one set at the lower setting will take effect. The speed and feed rates will still be synchronized. In this case, the speed may differ from what is programmed, even if the speed override switch is set at 100%.

3.7.3 Select Tool - T

To select a tool, program T..., where the T number is the carousel slot for the tool. The tool is not changed until an M6 is programmed (see Section 3.6.3). The T word may appear on the same line as the M6 or on a previous line. It is OK, but not normally useful, if T words appear on two or more lines with no tool change. The carousel may move a lot, but only the most recent T word will take effect at the next tool change. It is OK to program T0; no tool will be selected. This is useful if you want the spindle to be empty after a tool change.

It is an error if:
- a negative T number is used,
- a T number larger than the number of slots in the carousel is used.

On some machines, the carousel will move when a T word is programmed, at the same time machining is occurring. On such machines, programming the T word several lines before a tool change will save time. A common programming practice for such machines is to put the T word for the next tool to be used on the line after a tool change. This maximizes the time available for the carousel to move.

3.8 Order of Execution

The order of execution of items on a line is critical to safe and effective machine operation. Items are executed in the order shown in Table 3-7 if they occur on the same line.
Table 3-7 Order of execution

1. comment (includes message).
2. set feed rate mode (G93, G94 -inverse time or per minute).
3. set feed rate (F).
4. set spindle speed (S).
5. select tool (T).
6. change tool (M6).
7. spindle on or off (M3, M4, M5).
8. coolant on or off (M7, M8, M9).
9. enable or disable overrides (M48, M49).
10. dwell (G4).
11. set active plane (G17, G18, G19).
12. set length units (G20, G21).
13. cutter radius compensation on or off (G40, G41, G42).
14. cutter length compensation on or off (G43, G49).
15. coordinate system selection (G54, G55, G56, G57, G58, G59, G59.1, G59.2, G59.3).
16. set path control mode (G61, G61.1, G64).
17. set distance mode (G90, G91).
18. set retract mode (G98, G99).
19. home (G28, G30) or change coordinate system data (G10) or set axis offsets (G92, G92.1, G92.2, G94).
20. perform motion (G0 to G3, G80 to G89), as modified (possibly) by G53.
21. stop (M0, M1, M2, M30, M60).

4 Language extensions

To provide additional flexibility, I created some extensions in the language that allow for programming.

4.1 FLOW CONTROL

You can use the following flow control commands in a job:
IF[x]-ELSE-ENDIF constructs to define x dependent execution
WHILE[x]-ENDWHILE constructs to define x dependent repeated execution
SUB <name>-ENDSUB constructs to define a subroutine
GOSUB <name> construct to call a subroutine

4.2 SUPPORTED OPERATIONS ON EXPRESSIONS

4.2.1 unary operations
abs absolute value
acos arc cosine
asin arc sine
atan arc tangent
cos cosine
exp e raised to
fix round down
fup round
int integer part
ln natural log of
round round
sin sine
sqrt square root
tan tangent
not logical not

4.2.2 binary operations:
/ divided by
mod modulo
** power
* times
and logic and
xor logic exclusive or
- minus
or logic non exclusive or
+ plus
> greater then
>= greater than or equal
< less then
<= less than or equal
== is equal
<> not equal
band bitwise and
bxor bitwise exclusive or
bor bitwise non exclusive or
<< shift left
>> shift right

See also B.2 for examples on expressions.
4.2.3 An example:

```plaintext
sub do_circle_holes
#1=0
g0 z1 x0 y0
while [#1 <> 360]
    #2 = [10 * sin[#1]]
    #3 = [10 * cos[#1]]
    g0 x[#3] y[#2]
    g1 z-1
g1 z1
    #1 = [#1 + 30]

    if [#1 == 360]
        msg "Done"
    else
        msg "processing at angle ", #1
    endif
endwhile
endsub
gosub do_circle_holes
m30
```

This example drills holes at a circle with a radius of 10, each 30 degrees. The code that performs this is put in a subroutine, which can be called as many times as needed in the main program.

4.2.4 Special interpreter commands, non G-Code

Messages:
Msg "Hello there, the value of #1 = "#1" and the value of #2 = "#2"

ErrMsg
Same as Msg, but this one generates an error

Store position
SP <filename> [0 or 1]
This command stores the actual position in given file name.
The extra parameter 0 means create the file.
1 means add to existing file.
If only file name is given, the position is added to existing file.

DlgMsg
Gives a dialog message for an interactive g-code program.
DlgMsg <dialog message> <par1Name> <par1ParNumber> ... <par12Name> <par12ParNumber>
Example:
DlgMsg "Give parameters" par1 100 par2 101
The dialog will have an OK and a Cancel button.
When the user selects OK, variable #5398 is set to 1 and the program automatically continues.
When the user selects CANCEL, variable #5398 is set to -1, program continues.
Just try and you will see what this is about.
if <dialog message>.png picture exist it will be show.
EXAMPLE of dlg msg:
For this example we created a subroutine associated with user_3 button in the UI.

```
sub user_3 ;Example of dlgmsg
#1 = 0
#2 = 0
#3 = 0
#4 = 0
#5 = 0
#6 = 0
#7 = 0
#8 = 0
#9 = 0
#10 = 0
#11 = 0
#12 = 0

;dlgmsg will pop up a dialog with picture usbcnc.png from c:\program files\usbcnc4\dialogPictures directory
dlgmsg "usbcnc" "A" 1 "B" 2 "C" 3 "D" 4 "E" 5 "F" 6 "G" 7 "H" 8 "I" 9 "J" 10 "K" 11 "L" 12

if [#5398 == 1]
msg "OK #1=#1 #2=#2 #3=#3 #4=#4 #5=#5 #6=#6 #7=#7 #8=#8 #9=#9 #10=#10 #11=#11 #12=#12
else
msg "CANCEL #1=#1 #2=#2 #3=#3 #4=#4 #5=#5 #6=#6 #7=#7 #8=#8 #9=#9 #10=#10 #11=#11 #12=#12
endif

e ndsub
```

LogFile, LogMsg
Log anything to a file.
```
LogFile <fileName> <1=append, 0=open new>
LogMsg your message
```

Example:
LogFile “text.txt” 1
LogMsg “Hi, the current position of X is “#5001

Now check the contents of file text.txt.

TCAGuard [on | off]
Switches on or off the tool change area guard.
This is used during the rendering process, where the job file is checked for collisions with the machine area and tool change area.

HomeIsEstop [on | off]
This allows to control the homeIsEstop feature.
When on, a EStop is generated when one of the home sensors activate.

4.2.5 Special interpreter MDI commands.

M6 TX which is a tool change will call the subroutine change_tool. This subroutine can be customized to match your machine.

Gosub subname moves the interpreter to the first line off the subroutine, allowing you to execute the subroutine without calling it from the main program. This is good for testing subroutines. In combination with DlgMsg you can give your own input parameters.

4.3 MACRO FILE AND AUTOMATIC TOOL CHANGE
Whenever a G-Code file is loaded, also the file “macro.cnc” is loaded. In this file you may put your frequently used subroutines, these can be invoked by the G-Code file through GOSUB subroutineName.
The file contains default one special subroutine called “change_tool”, this function is called automatically when a M6 TX command (Tool change) is encountered in the G-Code file. With this it is possible to define your own tool change, especially useful when you have an automatic tool changer. You can put moves and I/O actions there as well as automatic tool length measurement using the probe with G38.2.

The tool change area can be guarded for collision, if it is defined the rendering process will detect eventual collisions and report it. So a normal workpiece program is not allowed to go through the Tool Change Area.
The tool change itself is allowed to go to this area. Therefor the change_tool subroutine contains the statement
TCAGuard off at the beginning and TCAGuard on at the end.
References

[Albus] Albus, James S; et al; NIST Support to the Next Generation Controller Program: 1991 Final Technical Report; NISTIR 4888; National Institute of Standards and Technology, Gaithersburg, MD; July 1992

[Allen-Bradley] Allen-Bradley; RS274/NGC for the Low End Controller; First Draft; Allen-Bradley; August 1992

[EIA] Electronic Industries Association; EIA Standard EIA-274-D Interchangeable Variable Block Data Format for Positioning, Contouring, and Contouring/Positioning Numerically Controlled Machines; Electronic Industries Association; Washington, DC; February 1979

[Kramer1] Kramer, Thomas R.; Proctor, Frederick M.; Michaloski, John L.; The NIST RS274/NGC Interpreter, Version 1; NISTIR 5416; National Institute of Standards and Technology, Gaithersburg, MD; April 1994

[Kramer2] Kramer, Thomas R.; Proctor, Frederick M.; The NIST RS274KT Interpreter; NISTIR 5738; National Institute of Standards and Technology, Gaithersburg, MD; October 1995

[Kramer3] Kramer, Thomas R.; Proctor, Frederick M.; The NIST RS274/NGC Interpreter -Version 2; NISTIR 5739; National Institute of Standards and Technology, Gaithersburg, MD; October 1995

[Kramer4] Kramer, Thomas R.; Proctor, Frederick M.; The NIST RS274/VGER Interpreter; NISTIR 5754; National Institute of Standards and Technology, Gaithersburg, MD; November 1995

[K&T] Kearney and Trecker Co.; Part Programming and Operating Manual, KT/CNC Control, Type C; Pub 687D; Kearney and Trecker Corp.; 1980

[NCMS] National Center for Manufacturing Sciences; The Next Generation Controller Part Programming Functional Specification (RS-274/NGC); Draft; NCMS; August 1994

[Proctor] Proctor, Frederick M.; Kramer, Thomas R.; Michaloski, John L.; Canonical Machining Commands; NISTIR 5970; National Institute of Standards and Technology, Gaithersburg, MD; January 1997
A Cutter Radius Compensation

This appendix discusses cutter radius compensation. It is intended for NC programmers and machine operators.

See Section 3.5.10 for additional information on cutter radius compensation.

A.1 INTRODUCTION

The cutter radius compensation capabilities of the Interpreter enable the programmer to specify that a cutter should travel to the right or left of an open or closed contour in the XY-plane composed of arcs of circles and straight line segments.

Cutter radius compensation is performed only with the XY-plane active. All the figures in this appendix, therefore, show projections on the XY-plane.

Where the adjacent sides of remaining material meet at a corner, there are two common ways to handle the tool path. The tool may pass in an arc around the corner, or the tool path may continue straight in the direction it was going along the first side until it reaches a point where it changes direction to go straight along the second side. Figure A-1 shows these two types of path. On Figure A-1:

- Uncut material is shaded in the figures. Note that the inner triangles have the same shape with both tool paths.
- The white areas are the areas cleared by the tool.
- The lines in the center of the white areas represent the path of the tip of a cutting tool.
- The tool is the cross-hatched circles.

Both paths will clear away material near the shaded triangle and leave the shaded triangle uncut. When the Interpreter performs cutter radius compensation, the tool path is rounded at the corners, as shown on the left in Figure A-1. In the method on the right (the one not used), the tool does not stay in contact with the shaded triangle at sharp corners, and more material than necessary is removed.

There are also two alternatives for the path that is programmed in NC code during cutter radius compensation. The programmed path may be either (1) the edge of the material to remain uncut (for example, the edge of the inner triangle on the left of Figure A-1), or (2) the nominal tool path (for example, the tool path on the left side of Figure A-1). The nominal tool path is the path that would be used if the tool were exactly the intended size. The Interpreter will handle both cases without being told which one it is. The two cases are very similar, but different enough that they are described in separate sections of this manual. To use the material edge method, read Section A.3. To use the nominal path method, read Section A.4.
Z-axis motion may take place while the contour is being followed in the XY-plane. Portions of the contour may be skipped by retracting the Z-axis above the part, following the contour to the next point at which machining should be done, and re-extending the Z-axis. These skip motions may be performed at feed rate (G1) or at traverse rate (G0). The Z motion will not interfere with the XY path following. The sample NC code in this appendix does not include moving the Z-axis. In actual programs, include Z-axis motion wherever you want it.

Rotational axis motions (A, B, and C axes) are allowed with cutter radius compensation, but using them would be very unusual.

Inverse time feed rate (G93) or units per minute feed rate (G94) may be used with cutter radius compensation. Under G94, the feed rate will apply to the actual path of the cutter tip, not to the programmed contour.

4.3.1 Data for Cutter Radius Compensation

The Interpreter world model keeps three data items for cutter radius compensation: the setting itself (right, left, or off), program_x, and program_y. The last two represent the X and Y positions which are given in the NC code while compensation is on. When compensation is off, these both are set to a very small number (10^-20) whose symbolic value is "unknown". The Interpreter world model uses the data items current_x and current_y to represent the position of the center of the tool tip (in the currently active coordinate system) at all times.

A.2 PROGRAMMING INSTRUCTIONS

4.3.2 Turning Cutter Radius Compensation On

To start cutter radius compensation keeping the tool to the left of the contour, program G41 D…. The D word is optional (see "Use of D Number", just below).

To start cutter radius compensation keeping the tool to the right of the contour, program G42 D….
In Figure A-1, for example, if G41 were programmed, the tool would move clockwise around the triangle, so that the tool is always to the left of the triangle when facing in the direction of travel. If G42 were programmed, the tool would stay right of the triangle and move counter clockwise around the triangle.

4.3.3 Turning Cutter Radius Compensation Off
To stop cutter radius compensation, program G40. It is OK to turn compensation off when it is already off.

4.3.4 Sequencing
If G40, G41, or G42 is programmed on the same line as tool motion, cutter compensation will be turned on or off before the motion is made. To make the motion come first, the motion must be programmed on a separate, previous line of code.

4.3.5 Use of D Number
Programming a D word with G41 or G42, is optional. If a D number is programmed, it must be a non-negative integer. It represents the slot number of the tool whose radius (half the diameter given in the tool table) will be used, or it may be zero (which is not a slot number). If it is zero, the value of the radius will also be zero. Any slot in the tool table may be selected. The D number does not have to be the same as the slot number of the tool in the spindle, although it is rarely useful for it not to be. If a D number is not programmed, the slot number of the tool in the spindle will be used as the D number.

4.3.6 Material Edge Contour
When the contour is the edge of the material, the outline of the edge is described in the NC program. For a material edge contour, the value for the diameter in the tool table is the actual value of the diameter of the tool. The value in the table must be positive. The NC code for a material edge contour is the same regardless of the (actual or intended) diameter of the tool.

4.3.7 Programming Entry Moves
In general, two pre-entry moves and one entry move are needed to begin compensation correctly. However, if there is a convex corner on the contour, a simpler method is available using zero or one pre-entry move and one entry move. The general method, which will work in all situations, is described first. We assume here that the programmer knows what the contour is already and has the job of adding entry moves.

A.2.1.1 General Method
The general method includes programming two pre-entry moves and one entry move. See Figure A-2. The shaded area is the remaining material. It has no corners, so the simple method cannot be used. The dotted line is the programmed path. The solid line is the actual path of the tool tip. Both paths go clockwise around the remaining material. A cutter one unit in diameter is shown part way around the path. The black dots mark points at the beginning or end of programmed or actual moves. The figure shows the second pre-entry move but not the first, since the beginning point of the first pre-entry move could be anywhere.
First, pick a point A on the contour where it is convenient to attach an entry arc. Specify an arc outside the contour which begins at a point B and ends at A tangent to the contour (and going in the same direction as it is planned to go around the contour). The radius of the arc should be larger than half the diameter given in the tool table. Then extend a line tangent to the arc from B to some point C, located so that the line BC is more than one tool radius long. After the construction is finished, the code is written in the reverse order from the construction. The NC code is shown in Table A-1; the first three lines are the entry moves just described.

Table A-1 NC program for figure A-2

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0010</td>
<td>G1 X1 Y5</td>
<td>make first pre-entry move to C</td>
</tr>
<tr>
<td>N0020</td>
<td>G41 G1 Y4</td>
<td>turn compensation on and make second pre-entry move to point B</td>
</tr>
<tr>
<td>N0030</td>
<td>G3 X2 Y3 I1</td>
<td>make entry move to point A</td>
</tr>
<tr>
<td>N0040</td>
<td>G2 X3 Y2 J-1</td>
<td>cut along arc at top</td>
</tr>
<tr>
<td>N0050</td>
<td>G1 Y-1</td>
<td>cut along right side</td>
</tr>
<tr>
<td>N0060</td>
<td>G2 X2 Y-2 I-1</td>
<td>cut along arc at bottom right</td>
</tr>
<tr>
<td>N0070</td>
<td>G1 X-2</td>
<td>cut along bottom side</td>
</tr>
<tr>
<td>N0080</td>
<td>G2 X-2.6 Y-0.2 J1</td>
<td>cut along arc at bottom left</td>
</tr>
<tr>
<td>N0090</td>
<td>G1 X1.4 Y2.8</td>
<td>cut along third side</td>
</tr>
<tr>
<td>N0100</td>
<td>G2 X2 Y3 I0.6 J-0.8</td>
<td>cut along arc at top of tool path</td>
</tr>
<tr>
<td>N0110</td>
<td>G40</td>
<td>turn compensation off</td>
</tr>
</tbody>
</table>

Cutter radius compensation is turned on after the first pre-entry move and before the second pre-entry move (including G41 on the same line as the second pre-entry move turns compensation on before the move is made). In the code above, line N0010 is the first pre-entry move, line N0020 turns compensation on and makes the second pre-entry move, and line N0030 makes the entry move.

A.2.1.2 SIMPLE METHOD

If there is a convex (sticking out, not in) corner somewhere on the contour, a simpler method of making an entry is available. See Figure A-3.

First, pick a convex corner. There is only one corner in Figure A-3. It is at A, and it is convex. Decide which way you want to go along the contour from A. In our example we are keeping the tool to the left of the remaining material and going clockwise. Extend the side to be cut...
(DA in the figure) to divide the area outside the material near A into two regions; DA extended is the dotted line AC on the figure. Make a pre-entry move to anywhere in the region on the same side of DC as the remaining material (point B on the figure) and not so close to the remaining material that the tool is cutting into it. Anywhere in the diagonally shaded area of the figure (or above or to the left of that area) is OK. If the tool is already in region, no pre-entry move is needed. Write a line of NC code to move to B, if necessary. Then write a line of NC code for a straight entry move that turns compensation on and goes to point A. If B is at (1.5, 4), the two lines of code for the pre-entry and entry moves would be:

N0010 G1 X1.5 Y4 (move to B)
N0020 G41 G1 X3 Y3 (turn compensation on and make entry move to A)

These two lines would be followed by four lines identical to lines N0050 to N0080 from Table A-1, but the end of the program would be different since the shape of remaining material is different.

It would be OK for B to be on line AC. In fact, B could be placed on the extension outside the part of any straight side of the part. B could be placed on EF extended to the right (but not to the left, for going clockwise), for example.

If DA were an arc, not a straight line, the two lines of code above would still be suitable. In this case, the dotted line extending DA should be tangent to DA at A.

Figure A-3 Simpler cutter radius compensation entry move (for material edge contour)

A.3 NOMINAL PATH CONTOUR

When the contour is a nominal path contour (the path a tool with exactly the intended diameter would take), the tool path is described in the NC program. It is expected that (except for during the entry moves) the path is intended to create some part geometry. The path may be generated manually or by a post-processor, considering the part geometry which is intended to be made. For the Interpreter to work, the tool path must be such that the tool stays in contact with the edge of the part geometry, as shown on the left side of Figure A-1. If a path of the sort shown on the right of Figure A-1 is used, in which the tool does not stay in contact with the part geometry all the time, the Interpreter will not be able to compensate properly when undersized tools are used. A nominal path contour has no corners, so the simple method just described will not work.
For a nominal path contour, the value for the cutter diameter in the tool table will be a small positive number if the selected tool is slightly oversized and will be a small negative number if the tool is slightly undersized. If a cutter diameter value is negative, the Interpreter compensates on the other side of the contour from the one programmed and uses the absolute value of the given diameter. If the actual tool is the correct size, the value in the table should be zero. Suppose, for example, the diameter of the cutter currently in the spindle is 0.97, and the diameter assumed in generating the tool path was 1.0. Then the value in the tool table for the diameter for this tool should be -0.03.

The nominal tool path needs to be programmed so that it will work with the largest and smallest tools expected to be actually used. We will call the difference between the radius of the largest expected tool and the intended radius of the tool the "maximum radius difference." This is usually a small number.

The method includes programming two pre-entry moves and one entry moves. See Figure A-4. The shaded area is the remaining material. The dashed line is the programmed tool path. The solid line is the actual path of the tool tip. Both paths go clockwise around the remaining material. The actual path is to the right of the programmed path even though G41 was programmed, because the diameter value is negative. On the figure, the distance between the two paths is larger than would normally be expected. The 1-inch diameter tool is shown part way around the path. The black dots mark points at the beginning or end of programmed moves. The corresponding points on the actual path have not been marked. The actual path will have a very small additional arc near point B unless the tool diameter is exactly the size intended. The figure shows the second pre-entry move but not the first, since the beginning point of the first pre-entry move could be anywhere.

First, pick a point A on the contour where it is convenient to attach an entry arc. Specify an arc outside the contour which begins at a point B and ends at A tangent to the contour (and going in the same direction as it is planned to go around the contour). The radius of the arc should be larger than the maximum radius difference. Then extend a line tangent to the arc from B to some point C, located so that the length of line BC is more than the maximum radius difference. After the construction is finished, the code is written in the reverse order from the construction. The NC code is shown in Table A-2; the first three lines are the entry moves just described.

Table A-2 NC program for Figure A-4

<table>
<thead>
<tr>
<th>Line</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0010</td>
<td>G1 X1.5 Y5</td>
<td>(make first pre-entry move to C)</td>
</tr>
<tr>
<td>N0020</td>
<td>G41 G1 Y4</td>
<td>(turn compensation on and make second pre-entry move to point B)</td>
</tr>
<tr>
<td>N0030</td>
<td>G3 X2 Y3.5 I0.5</td>
<td>(make entry move to point A)</td>
</tr>
<tr>
<td>N0040</td>
<td>G2 X3.5 Y2 J-1.5</td>
<td>(cut along arc at top)</td>
</tr>
<tr>
<td>N0050</td>
<td>G1 Y-1</td>
<td>(cut along right side)</td>
</tr>
<tr>
<td>N0060</td>
<td>G2 X2 Y-2.5 I-1.5</td>
<td>(cut along arc at bottom right)</td>
</tr>
<tr>
<td>N0070</td>
<td>G1 X-2</td>
<td>(cut along bottom side)</td>
</tr>
<tr>
<td>N0080</td>
<td>G2 X-2.9 Y0.2 J1.5</td>
<td>(cut along arc at bottom left)</td>
</tr>
<tr>
<td>N0090</td>
<td>G1 X1.1 Y3.2</td>
<td>(cut along third side)</td>
</tr>
<tr>
<td>N0100</td>
<td>G2 X2 Y3.5 I0.9 J-1.2</td>
<td>(cut along arc at top of tool path)</td>
</tr>
<tr>
<td>N0110</td>
<td>G40</td>
<td>(turn compensation off)</td>
</tr>
</tbody>
</table>
Figure A-4 Cutter radius compensation entry moves

Cutter radius compensation is turned on after the first pre-entry move and before the second pre-entry move (including G41 on the same line as the second pre-entry move turns compensation on before the move is made). In the code above, line N0010 is the first pre-entry move, line N0020 turns compensation on and makes the second pre-entry move, and line N0030 makes the entry move.

A.4 PROGRAMMING ERRORS AND LIMITATIONS

The Interpreter will issue the following error messages involving cutter radius compensation. In addition to these, there are several bug messages related to cutter compensation, but they should never occur.

1. Cannot change axis offsets with cutter radius comp
2. Cannot change units with cutter radius comp
3. Cannot probe with cutter radius comp on
4. Cannot turn cutter radius comp on out of xy-plane
5. Cannot turn cutter radius comp on when on
6. Cannot use g28 or g30 with cutter radius comp
7. Cannot use g53 with cutter radius comp
8. Cannot use xz-plane with cutter radius comp
9. Cannot use yz-plane with cutter radius comp
10. Concave corner with cutter radius comp
11. Cutter gouging with cutter radius comp
12. D word with no g41 or g42
13. Multiple d words on one line
14. Negative d word tool radius index used
15. Tool radius index too big
16. Tool radius not less than arc radius with comp
17. Two g codes used from same modal group.

Most of these are self-explanatory. For those that require explanation, an explanation is given below.

Changing a tool while cutter radius compensation is on is not treated as an error, although it is unlikely this would be done intentionally. The radius used when cutter radius compensation
was first turned on will continue to be used until compensation is turned off, even though a new tool is actually being used.

A.4.1 Concave Corner and Tool Radius Too Big (10 and 16)
When cutter radius compensation is on, it must be physically possible for a circle whose radius is the half the diameter given in the tool table to be tangent to the contour at all points of the contour. In particular, the Interpreter treats concave corners and concave arcs into which the circle will not fit as errors, since the circle cannot be kept tangent to the contour in these situations. See Figure A-5. This error detection does not limit the shapes which can be cut, but it does require that the programmer specify the actual shape to be cut (or path to be followed), not an approximation. In this respect, the NIST RS274/NGC Interpreter differs from interpreters used with many other controllers, which often allow these errors silently and either gouge the part or round the corner.

![Concave Corner and Tool Radius Too Big Diagram]

Figure A-5, Two cutter radius compensation errors

In both examples, the line represents a contour, and the circle represents the cross section of a tool following the contour using cutter radius compensation (tangent to one side of the path.)

A.4.2 Cannot Turn Cutter Radius Comp on When On (5)
If cutter radius compensation has already been turned on, it cannot be turned on again. It must be turned off first; then it can be turned on again. It is not necessary to move the cutter between turning compensation off and back on, but the move after turning it back on will be treated as a first move, as described below.

It is not possible to change from one cutter radius index to another while compensation is on because of the combined effect of rules 5 and 12. It is also not possible to switch compensation from one side to another while compensation is on.

A.4.3 Cutter Gouging (11)
If the tool is already covering up the next XY destination point when cutter radius compensation is turned on, the gouging message is given when the line of NC code which gives the point is reached. In this situation, the tool is already cutting into material it should not cut. More details are given in Section A.6.

A.4.4 Tool Radius Index Too Big (15)
If a D word is programmed that is larger than the number of tool carousel slots, this error message is given. In the SAI, the number of slots is 68.

A.4.5 Two G Codes Used from Same Modal Group (17)
This is a generic message used for many sets of G codes. As applied to cutter radius compensation, it means that more than one of G40, G41, and G42 appears on a line of NC code. This is not allowed.

A.5 First Move into Cutter Compensation
The algorithm used for the first move after cutter radius compensation is turned on, when the first move is a straight line, is to draw a straight line from the programmed destination point which is tangent to a circle whose center is at the current point and whose radius is the radius of the tool. The destination point of the tool tip is then found as the center of a circle of the same radius tangent to the tangent line at the destination point. If the programmed point is inside the initial cross section of the tool (the circle on the left), an error is signaled as described in Section A.5.3. The concept of the algorithm is shown in Figure A-6.
The function that locates the destination point actually takes a computational shortcut based on the fact that the line (not drawn on the figure) from the current point to the programmed point is the hypotenuse of a right triangle having the destination point at the corner with the right angle.

Figure A-6, First cutter radius compensation move - Straight

![Diagram](image)

If the first move after cutter radius compensation has been turned on is an arc, the arc which is generated is derived from an auxiliary arc which has its center at the programmed center point, passes through the programmed end point, and is tangent to the cutter at its current location. If the auxiliary arc cannot be constructed, an error is signaled. The generated arc moves the tool so that it stays tangent to the auxiliary arc throughout the move. This is shown in Figure A-7.

Figure A-7, First cutter radius compensation move - Arc

![Diagram](image)

Figure A-7 shows the conceptual approach for finding the arc. The actual computations differ between the center format arc and the radius format arc (see Section 3.5.3). After the entry moves of cutter radius compensation, the Interpreter keeps the tool tangent to the programmed path on the appropriate side. If a convex corner is on the path, an arc is inserted to go around the corner. The radius of the arc is half the diameter given in the tool table.

When cutter radius compensation is turned off, no special exit move takes place. The next move is what it would have been if cutter radius compensation had never been turned on and the previous move had placed the tool at its current position.
A.6 Hardware Installation Tips

Building a reliable CNC system is not just making the right connections. EMC plays an important role here. We have several components that generate a lot of EMC noise, the drivers, the power supplies if they are switched mode supplies, the VFD if we have a HF spindle. The CPU and the communication to the PC, especially USB is very sensitive for EMC and may stop functioning when we make “spaghetti” wiring and no good functional Earth. So the routing of the cabling must be done in a right way. Very important is making a good EMC functional Earth using a star point GND.

To prevent this miss function due to EMC, the USBCNC CPU should be build in correctly according these general EMC rules:

- Mount all electronics in a metal cabinet or on a metal plate in a plastic cabinet.
- Use a mains filter.
- Create a central GND point near the filter and connect the PE (Protective Earth) as well as the GND from all power supplies to this point.

- Route motor cables nicely along the cabinet edge, as far as possible away from the CPU. This way the cables noise radiation can flow away to the cabinet.
- Use shielded cables for the motor connections, both inside the cabinet and outside the cabinet. Connect the shield at one side to the central ground point, leave the other side un-connected.
- Use a professional USB2 cable, double shielded with ferrites like this:

- Keep all GND cables especially short and use thick flexible cable
- If not possible to keep it short, then connect it to the metal GND plate.
Schematic drawing of a possible good layout in the cabinet.

Here a picture of my own system, it contains various EMC problem makers, like 2 Switched mode power supplies and a frequency inverter for a HF spindle. Check the routing of the Motor and drive supply wires.

Also there a 4 stepper-motor drives working at 75 Volt, motor currents 4,2 Amp.